Jeremy Krushner
RailPro
2700 NE Andresen Rd Ste 628
Vancouver, WA 98661

Analysis of Cable Guardrail Systems One and Two Family Use RailPro Profiles

Dear Mr. Krushner:
James G. Pierson, Inc. is pleased to submit this report which summarizes the results of the analysis of RailPro Cable Residential Guardrails.

Separate reports for the analysis and testing of the Railpro guardrail systems for the baluster and glass guardrail systems have been completed and are not part of the attached analysis.

CONCLUSIONS

1. The analysis demonstrates that the Railpro Cable System profiles used for residential guardrail systems meet the requirements of the 2015 International Residential Code.
2. The analysis utilizes allowable stress design (working stress design). The analysis provides a demonstration that the cable guardrail system meets the applicable code requirements.
3. Verification that the deck or balcony framing supporting the guardrail system meets the minimum sizes specified is beyond the scope of this report (by others).

PRODUCT DESCRIPTION

The Railpro Cable Residential Railing System consists of extruded aluminum alloy 6005A-T6 and T5 framing members ($15 / 8$ " x $15 / 8 "$ posts, $15 / 8$ "x $15 / 8$ " superposts, and 1 "x3" termination posts) with aluminum top rails extruded from aluminum alloy 6063-T5 material. Cable in-fill are $1 / 8$ " diameter multi-strand 1 x19 stainless steel cables spaced at $31 / 8^{\prime \prime} \mathrm{o} / \mathrm{c}$ and pre-stressed to 175 lbs tension. Aluminum members are connected together with cadmium-coated Torx Drive flat head steel screws and coated with a pigmented enamel finish for durability and aesthetics or Type 304 SH stainless steel flat head screws (\#12).

The railing systems are typically sold for use as exterior guardrails on balconies, decks, porches, stairs and similar installations in residential use where railings are required or desired.

These systems are designed to be partially field-fabricated using stock components. The frames are designed to attach the systems to structures composed of wood and other components. The screw and lag connectors used to connect to the supporting structures should be either hot dipped galvanized steel or stainless steel.

The top railing for these systems is offered in a few different cross-sectional configurations (Series 1500S, 1500R, and 3000R). Railing sections are fabricated for the required spacing between vertical posts. The posts are attached to mounting brackets which are attached to the deck or balcony framing.

STANDARDS

Railpro products are based in Vancouver, WA and marketed in the western United States. Therefore, it was determined that standard used for analysis should be the minimum loads specified in the 2015 International Residential Code (IRC) which are the basis for state building codes in the Western United States.

It was determined that the loading provisions of Section R301.5 of the IRC applies to the Railpro cable residential railing systems. Railing Systems are required to withstand a specified loading of 200 pounds applied in any direction to the top rail of guardrails. The top rail load is not required to be concurrent with any other loads.

Components of a rail system (pickets, glass panels, cables, bottom rails) are required designed to resist a 50 lb force in any direction over a one foot square.

The terminology of the IRC "be designed to resist" was interpreted to mean that the railing system being analyzed would resist the forces applied without any material yielding (breaking or permanent bending). Because railing system members are not considered to be structural components of a building, the material deflection limit requirements do not apply; however, it is obvious that a railing system must resist minimum loads without plastic a deformation that would compromise safety. As a result, the analysis utilizes allowable stress design (working stress design). The analysis
provides a suitably conservative demonstration that the residential guardrail system meets the applicable code requirements.

ANALYSIS RESULTS

The analysis is elaborated as follows:

- Calculations
. Section Properties
- Typical Connections

Pages 1-30
Pages P1-P6
Pages C-1-

We are pleased to submit this report. Please call us if questions arise.

Peder Golberg, P.E., S.E.
Principal

Rail Pro Residential Cable Rail System

Check for conformance to:
International Residence Code Section R312 \& Table R301.5

Loads: $\quad 200$ lbs applied in any direction along top rail 50 lbs on an area of $1 \mathrm{ft}{ }^{\wedge} 2$ applied horizontally (non-concurrently with top rail load)

Framework is extruded Aluminum 6063-T5 (rails), 6005A-T6 (typ posts), or 6005-T5 (termination posts)

Cable in-fill is $1 / 8^{\prime \prime}$ diameter multi-strand 1×19 strainless steel cables spaced at $31 / 8$ " o/c and pre-stressed to 175 lbs max (see chart)

Fasteners are \#12 18-8 stainless steel screws

Top rail is fastened to a flange on the top of the posts with (4) \#12 18-8 screws. The vertical posts are attached to the baseplates with welds around all sides fully developing the material.

Working Stress Design Utilized
Aluminum Properties: Extruded 6005-T6
; $\mathrm{Ftu}=38 \mathrm{ksi}$
;Fty $=35 \mathrm{ksi}$
; $\mathrm{F}^{\prime} \mathrm{cy}=35 \mathrm{ksi}$
; $\mathrm{F}_{\text {shear }}=20 \mathrm{ksi}$
;E = 10100 ksi
$; \mathrm{F}_{\mathrm{b} 1}=\mathrm{F}_{\mathrm{cy}} / 1.65=21212.121 \mathrm{psi} ;(\mathrm{ASD})$ or $; \mathrm{F}_{\mathrm{b} 2}=\mathrm{Ftu}_{\mathrm{u}} /\left(1^{*} 1.95\right)=19487.179 \mathrm{psi}$;(ASD)

$$
\begin{aligned}
& ; F_{b 1}=21212.121 \mathrm{psi} \quad ; F_{b 2}=19487.179 \mathrm{psi} \\
& ; F_{\text {b6005T6 }}=\min \left(F_{b 1}, F_{b 2}\right) \\
& ; F_{\text {b6005T6 }}=19487.179 \mathrm{psi}
\end{aligned}
$$

James G. Pierson, Inc. Consulting Structural Engineers 610 S.W. Alder, Suite 918 Portland, Oregon 97205 Tel: (503) 226-1286 Fax: (503) 226-3130		Cable Railing Systems	Job no.
	Location	Residential	${ }^{\text {Date }} \quad 12 / 14 / 2017$
	Client	Railpro	Sheet no. Page 1 of 30

Aluminum Properties: Extruded 6063-T5

$$
\begin{aligned}
& ; \mathrm{Ftu6063}=22 \mathrm{ksi} \\
& ; \mathrm{Fty}_{\mathrm{y} 6063}=16 \mathrm{ksi} \\
& ; \mathrm{F}_{\text {cy6063 }}=16 \mathrm{ksi} \\
& ; \mathrm{F}_{\text {shear6063 }}=13 \mathrm{ksi} \\
& ; \mathrm{E}_{6063}=10100 \mathrm{ksi}
\end{aligned}
$$

$$
; F_{\mathrm{b} 16063}=\mathrm{F}_{\mathrm{cy} 6063}^{\prime} / 1.65=9696.970 \mathrm{psi} ;(\mathrm{ASD}) \text { or } ; \mathrm{F}_{\mathrm{b} 26663}=\mathrm{Ftu60663} /\left(1^{*} 1.95\right)=
$$

$$
11282.051 \text { psi ;(ASD) }
$$

$$
; \mathrm{F}_{\mathrm{b} 16063}=9696.970 \mathrm{psi} \quad ; \mathrm{F}_{\mathrm{b} 26063}=11282.051 \mathrm{psi}
$$

$$
; F_{\text {b6063 }}=\min \left(F_{\text {b16063 }}, F_{\text {b26063 }}\right)
$$

$$
; \mathrm{F}_{\mathrm{b6063}}=9696.970 \mathrm{psi}
$$

Aluminum Properties: Extruded 6005-T5

```
;Ftu6005T5 = 38 ksi
;Fty6005T5 = 35 ksi
;F'cy6005T5 = 35 ksi
;Fshear6005T5 = 24 ksi
;E60005T5 = 10100 ksi
```


19487.179 psi ;(ASD)
; Fb16005T5 $=21212.121 \mathrm{psi} \quad ; F_{\text {b26005T5 }}=19487.179 \mathrm{psi}$
$; \mathrm{Fb}_{\mathrm{b} 005 \mathrm{~T} 5}=\min \left(\mathrm{F}_{\left.\mathrm{b} 16005 \mathrm{~T} 5, \mathrm{Fb}_{\text {b6005T5 }}\right)}\right)$
;Fb605T5 $=19487.179 \mathrm{psi}$

James G. Pierson, Inc. Consulting Structural Engineers 610 S.W. Alder, Suite 918 Portland, Oregon 97205 Tel: (503) 226-1286 Fax: (503) 226-3130		Cable Railing Systems	tob no.
	Loation	Residential	${ }^{\text {Date }} \quad 12 / 14 / 2017$
	Client	Railpro	$\begin{aligned} & \text { shet no. } \\ & \hline \text { Päge } 2 \text { of } 30 \end{aligned}$

Guard Rail Cable Calculations

TASK:

Determine tension required so guard rail cables met deflection requirements

CABLE PROPERTIES:

Cable Material:
Cable Construction Type:
Young's Modulus:
Cable Diameter:
Cross-Sectional Area:
Cable Spacing:
Full Cable Length:
Unsupported Cable Span:

316 Stainless Steel
1×19
; $\mathrm{E}=15000000 \mathrm{psi}$
; $\mathrm{d}=0.125$ in
; $A=\left(\pi \times d^{2}\right) / 4=0.012 \mathrm{in}^{2}$
$; S=3.125$ in
; $\mathrm{L}=50 \mathrm{ft}=600.000 \mathrm{in}$
; $=48.00$ in

FORCES ON CABLE:

IBC 2015 1015.4:

"Required guards shall not have openings that allow passage of a sphere of 4 inches in diameter from the walking surface to the required guard height." No requirement or note in code about the force to be placed on the 4 " sphere.

ASCE 7-10 4.5.1:

"Intermediate rails (all those excep the handrail or top rail) and panel fillers shall be designed to withstand a horiztonally applied normal load of 50 lb on an aea not to exceed 12 in by $12 \mathrm{in"}$. Use this 50 psf force projected on the area of the 4 " sphere since code isn't clear on the required force to maintain the 4 " clear dimension.

Required Force:
Sphere Diameter:
Sphere Cirumference:
Projected Load over Circumference:
Safety Factor (chosen to use)
Max Applied Force:
; $\mathrm{F}_{\text {Req }}=50.00 \mathrm{psf}$
; $D=4.00$ in
; $C=\left(\pi \times D^{2}\right) / 4=0.087 \mathrm{ft}^{2}$
; FProj $=F_{\text {Req }} \times C=4.363 \mathrm{lb}$
; FS = 2;
; $\mathrm{F}_{\text {Max }}=\mathrm{F}_{\text {Proj }} \times \mathrm{FS}=8.727 \mathrm{lb}$

James G. Pierson, Inc.	Project	Cable Railing Systems
Consulting Structural Engineers 610 S.w. Alder, Suite 918 Portland, Oregon 97205 Tel: (503) 226-1286 Fax: (503) 226-3130	Location	Residential
	Client	Railpro

ANGLED FORCES AND CABLE DEFLECTION:

When the 4 " sphere is pushed through the cables, the cables are forced to move both vertically and horizontally, with the vertical displacement governing. The angle of the resultant force is approximately 45 degrees, which will be utilized in the angled force and deflection calculations.

Angled Force on Cable:
Allowable Vertical Deflection:
(governs)
Allowable Cable Deflection:
cable

Deflection equation derivation:

$$
\begin{aligned}
& \mathrm{T}=\left(\mathrm{F}_{\mathrm{A}} \times \mathrm{I}\right) /(4 \times \mathrm{a}) ; \\
& \delta=2 \times \mathrm{a}^{2} / \mathrm{I} ; \\
& \delta=(\mathrm{T} \times \mathrm{L}) /(\mathrm{E} \times \mathrm{A})=\left(\mathrm{F}_{\mathrm{A}} \times \mathrm{I}\right) /(4 \times \mathrm{a}) \times \mathrm{L} /(\mathrm{E} \times \mathrm{A}) ; \\
& 2 \times \mathrm{a}^{2} / \mathrm{I}=\left(\mathrm{F}_{\mathrm{A}} \times \mathrm{I}\right) /(4 \times \mathrm{a}) \times \mathrm{L} /(\mathrm{E} \times \mathrm{A}) ; \\
& 8 \times \mathrm{a}^{3} / \mathrm{I}=\left(\mathrm{F}_{\mathrm{A}} \times \mathrm{l} \times \mathrm{L}\right) /(\mathrm{E} \times \mathrm{A}) ; \\
& 8 \times \mathrm{a}^{3}=\left(\mathrm{F}_{\mathrm{A}} \times \mathrm{I}^{\wedge} 2 \times \mathrm{L}\right) /(\mathrm{E} \times \mathrm{A}) ;
\end{aligned}
$$

James G. Pierson, Inc. Consulting Structural Engineers 610 S.W. Alder, Suite 918 Portland, Oregon 97205 Tel: (503) 226-1286 Fax: (503) 226-3130	Project	Cable Railing Systems	Job no.
	Location	Residential	Date $\quad 12 / 14 / 2017$
	Client	Railpro	Sheet no. Page 4 of 30

$$
\begin{aligned}
& a^{3}=\left(F_{A} \times \wedge^{\wedge} 2 \times L\right) /(8 \times E \times A) ; \\
& a=\left(\left(F_{A} \times{ }^{\wedge} 2 \times L\right) /(8 \times E \times A)\right)^{1 / 3} ;
\end{aligned}
$$

Deflection due to sphere load:

$$
; \mathrm{as}=\left(\left(\mathrm{F}_{\mathrm{A}} \times \mathrm{I}^{2} \times \mathrm{L}\right) /(8 \times \mathrm{E} \times \mathrm{A})\right)^{1 / 3}=2.263 \mathrm{in}
$$

CABLE TENSION FORCE:

Deflection due to load is higher than the allowable, so cable is to be pretensioned to be compliant.

Tension in cable due to sphere load:

$$
\begin{aligned}
& ; \mathrm{T}_{\mathrm{s}}=\left(\mathrm{F}_{\mathrm{A}} \times \mathrm{I}\right) /(4 \times \mathrm{as})=65.450 \mathrm{lb} \\
& ; \mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{s}} \times\left(\mathrm{a}_{\mathrm{s}} / \mathrm{a}_{\mathrm{AII}}\right)=239.359 \mathrm{lb} \\
& ; \mathrm{T}_{\mathrm{p} 1}=\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{s}}=173.910 \mathrm{lb}
\end{aligned}
$$

Tension in cable at max deflection:
Required pretension:

- Cables are recommended by supplier to be tensioned at 300 lbs max / cable which is greater than the required pretension. Thus, cable is compliant with both codes IBC 2015 and IRC 2015.

CABLE TENSION FORCE FOR SHORTER SPANS:

Unsupported Cable Span:
Deflection due to sphere load:
2.448 in

Tension in cable due to sphere load:
Tension in cable at max deflection:
Required pretension:

Unsupported Cable Span:
Deflection due to sphere load:

2.070 in

Tension in cable due to sphere load:
Tension in cable at max deflection:
Required pretension:

Unsupported Cable Span:
Deflection due to sphere load:
1.868 in

Tension in cable due to sphere load:
Tension in cable at max deflection:
Required pretension:

$$
\begin{aligned}
& ; \mathrm{I}=54.00 \mathrm{in} \\
& ; \mathrm{as}_{\mathrm{s}}=\left(\left(\mathrm{F}_{\mathrm{A}} \times \mathrm{I}^{2} \times \mathrm{L}\right) /(8 \times \mathrm{E} \times \mathrm{A})\right)^{1 / 3}= \\
& ; \mathrm{T}_{\mathrm{s}}=\left(\mathrm{F}_{\mathrm{A}} \times \mathrm{I}\right) /\left(4 \times \mathrm{a}_{\mathrm{s}}\right)=68.071 \mathrm{lb} \\
& ; \mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{s}} \times\left(\mathrm{a}_{\mathrm{s}} / \mathrm{a}_{\mathrm{All}}\right)=269.279 \mathrm{lb} \\
& ; \mathrm{T}_{\mathrm{p} 3}=\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{s}}=201.209 \mathrm{lb} \\
& ; \mathrm{I}=42.00 \mathrm{in} \\
& ; \mathrm{a}_{\mathrm{s}}=\left(\left(\mathrm{F}_{\mathrm{A}} \times \mathrm{I}^{2} \times \mathrm{L}\right) /(8 \times \mathrm{E} \times \mathrm{A})\right)^{1 / 3}= \\
& \\
& ; \mathrm{T}_{\mathrm{s}}=\left(\mathrm{F}_{\mathrm{A}} \times \mathrm{I}\right) /(4 \times \mathrm{as})=62.601 \mathrm{lb} \\
& ; \mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{s}} \times\left(\mathrm{as} / \mathrm{a}_{\mathrm{AlI}}\right)=209.440 \mathrm{lb} \\
& ; \mathrm{T}_{\mathrm{p} 4}=\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{s}}=146.839 \mathrm{lb}
\end{aligned}
$$

$$
; \mathrm{l}=36.00 \mathrm{in}
$$

$$
; \mathrm{as}=\left(\left(\mathrm{F}_{\mathrm{A}} \times \mathrm{I}^{2} \times \mathrm{L}\right) /(8 \times \mathrm{E} \times \mathrm{A})\right)^{1 / 3}=
$$

$$
; \mathrm{T}_{\mathrm{s}}=\left(\mathrm{F}_{\mathrm{A}} \times \mathrm{I}\right) /(4 \times \mathrm{as})=59.465 \mathrm{lb}
$$

$$
; \mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{s}} \times\left(\mathrm{as} / \mathrm{a}_{\mathrm{All}}\right)=179.520 \mathrm{lb}
$$

$$
; \mathrm{T}_{\mathrm{p} 5}=\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{s}}=120.054 \mathrm{lb}
$$

James G. Pierson, Inc. Consulting Structural Engineers 610 S.W. Alder, Suite 918 Portland, Oregon 97205 Tel: (503) 226-1286 Fax: (503) 226-3130	Project	Cable Railing Systems	Job no.
	Location	Residential	Date $\quad 12 / 14 / 2017$
	Client	Railpro	Sheet no. Páge 5 of 30

Unsupported Cable Length:	Required Pretension:
$; 36 \mathrm{in} ;$	$\mathrm{T}_{\mathrm{p} 5}=120.054 \mathrm{lb}$
$; 42 \mathrm{in} ;$	$\mathrm{T}_{\mathrm{p} 4}=146.839 \mathrm{lb}$
$; 48 \mathrm{in} ;$	$\mathrm{T}_{\mathrm{p} 1}=173.910 \mathrm{lb}$
$; 54 \mathrm{in} ;$	$\mathrm{T}_{\mathrm{p} 2}=201.209 \mathrm{lb}$

Cable Forces on Posts:

Cable Tension is resisted by the termination posts and also corners or changes in direction.

Top rail acts as a compression member to resist cable tension forces. Bottom rail also acts as a compression member resisting cable tension when present. If there is no bottom rail, the base connection is required to resist the tension forces from cables. Top rail flat inserts (required for astestics) bear directly on face of post so tension forces are resisted by bearing and not just screws. For top rails when no infill is used, rail must be attached to posts with screws desgined to resist tension force.

Screw shear:

Per Aluminum Design Manual:

James G. Pierson, Inc. Consulting Structural Engineers 610 S.W. Alder, Suite 918 Portland, Oregon 97205 Tel: (503) 226-1286 Fax: (503) 226-3130	${ }^{\text {Project }}$	Cable Railing Systems	${ }^{\text {Job no. }}$
	Location	Residential	Date $\quad 12 / 14 / 2017$
	Client	Railpro	Sheet no. Page 6 of 30

5.4.3 Screw Shear and Bearing

The shear force on a screw shall not exceed the least of:

1) $2 F_{t a 1} D t_{l} / n_{w}$. (Eq. 5.4.3-1)
2) $2 F_{\text {nt2 }} D t_{2} / n_{v}$ (Eq. 5.4.3-2)
3) $4.2\left(t_{2}{ }^{3} D\right)^{12} F_{m 2} / n_{r}$, for $t_{2} \leq t_{1}$ (Eq. 5.4.3-3)
4) $P_{n s} /\left(1.25 n_{s}\right)$
(Eq. 5.4.3-4)

5.4.4 Minimum Spacing of Screws

The minimum distance between screw centers shall be 2.5 times the nominal screw diameter.

Minimum ; $\mathrm{F}_{\mathrm{tu} 1}=38000 \mathrm{psi}$;post and rails
;\#12 screw ; dscrew $=0.218$ in
Post and rail thickness; $\mathrm{t}_{1}=0.10$ in
Screw; Ftus $=125000$ psi
Pns = 2091 lbs ; \#12-14 HWH Teks screw (ESR 3223)

1) ; Vallow10 $=2$ * $\mathrm{F}_{\text {tu1 }}$ * $\mathrm{d}_{\text {screw }}{ }^{*} \mathrm{t}_{1} / 3=552.267 \mathrm{lbs}$
2) $; V_{\text {allow } 2}=2$ * $F_{\text {tu1 }}{ }^{*} d_{\text {screw }}{ }^{*} t_{1} / 3=552.267 \mathrm{lbs}$
3) ; Vallow $3=4.2 *\left(\mathrm{t}_{1}{ }^{3} \mathrm{~d}_{\text {screw }}\right)^{5}{ }^{5} \mathrm{~F}_{\text {tu } 1} / 3=785.489 \mathrm{lbs}$
4) $; V_{\text {allow } 4}=P n s /(1.25 * 3)=557.600 \mathrm{lbs}$
;Vallow $=\operatorname{Min}\left(\mathrm{V}_{\text {allow10, }}, \mathrm{V}_{\text {allow2 }}, \mathrm{V}_{\text {allow3 }}, \mathrm{V}_{\text {allow4 }}\right)=\mathbf{5 5 2 . 2 6 7} \mathrm{lbs}$
;Resisting Force required at Top rail assuming no bottom rail (;225 lbs tension) = 1157 lbs for 36 " guardrail post.
;Resisting Force required at Top rail assuming no bottom rail (225 lbs tension) $=1382 \mathrm{lbs}$ for 42" guardrail post.
(See RISA model for results)

Load Check ; 1382 lbs / Vallow = 2.502 ;screws Use 4 screws at top rail to post connection.

James G. Pierson, Inc. Consulting Structural Engineers 610 S.W. Alder, Suite 918 Portland, Oregon 97205 Tel: (503) 226-1286 Fax: (503) 226-3130	${ }^{\text {Project }}$	Cable Railing Systems	Job no.
	Location	Residential	Date $\quad 12 / 14 / 2017$
	Client	Railpro	Sheet no Page 7 of 30

Top Rails

Assume simply supported spans at ;L = 54 in ;maximum

Bending of Top Rail ; $\mathrm{M}=200 \mathrm{lbs} * \mathrm{~L} / 4=225.000 \mathrm{lb} _\mathrm{ft} ;$ or ; $\mathrm{M}=2700.000 \mathrm{lb}$ _in

1500 Series Top Rail (DIE AC6471 by Railcraft)
;Svert1500 $=0.22693$ in 3
;ShorZ $1500=0.34740 \mathrm{in}^{3}$
;fbvert $=\mathrm{M} /$ Svert $_{1500}=11897.942 \mathrm{psi}$
; $\mathrm{F}_{\mathrm{b} 6063}=9696.970 \mathrm{psi}$

No Good - Assume simply supported spans at ;L=44 in ;maximum

Bending of Top Rail ; $\mathrm{M}=200 \mathrm{lbs} * \mathrm{~L} / 4=183.333 \mathrm{lb} _\mathrm{ft} ;$ or ; $\mathrm{M}=2200.000 \mathrm{lb}$ _in
;fb ${ }_{\text {vert }}=\mathrm{M} /$ Svert $_{1500}=9694.619 \mathrm{psi}$

1500R Series Top Rail (DIE AC6470 by Railcraft)

Assume simply supported spans at $; \mathrm{L}=42$ in ;maximum

Bending of Top Rail ; $M=200 \mathrm{lbs} * L / 4=175.000 \mathrm{lb} _\mathrm{ft} ;$ or ; $M=2100.000 \mathrm{lb}$ _in

$$
\text { ;Svert } 1 \text { 1500r }=0.20341 \mathrm{in}^{3}
$$

;Shorz1500r $=0.35765$ in 3
;fbvert $=$ M / Svert $1500 \mathrm{r}=10323.976 \mathrm{psi}$
$; F_{b 6063}=9696.970 \mathrm{psi}$
No Good - Assume simply supported spans at ;L = 39 in ;maximum

Bending of Top Rail ; $\mathrm{M}=200 \mathrm{lbs}$ * L / $4=162.500 \mathrm{lb}$ _ft ; or ; $\mathrm{M}=1950.000 \mathrm{lb}$ _in
;fbvert $=\mathrm{M} /$ Svert $_{1500 \mathrm{r}}=9586.549 \mathrm{psi}$

3000R Series Top Rail (DIE AC62741 by Railcraft)

Assume simply supported spans at ;L = 54 in ;maximum

James G. Pierson, Inc. Consulting Structural Engineers 610 S.W. Alder, Suite 918 Portland, Oregon 97205 Tel: (503) 226-1286 Fax: (503) 226-3130	Project	Cable Railing Systems	Job no.
	Location	Residential	Date $12 / 14 / 2017$
	Client	Railpro	Sheet no. Påge 8 of 30

Bending of Top Rail ; $\mathrm{M}=200 \mathrm{lbs} * \mathrm{~L} / 4=225.000 \mathrm{lb}$ _ft ; or ; $\mathrm{M}=2700.000 \mathrm{lb}$ _in
;Svert ${ }_{3000}=0.29968$ in 3
;Shorz3000r $=0.54228$ in 3
;fbvert $=$ M / Svert3000r $=9009.610 \mathrm{psi}$
; $\mathrm{Fb}_{\mathrm{b} 663}=9696.970 \mathrm{psi}$

TOP RAIL COMPRESSION CHECK

Check allowable compression in top rails (tubular shapes per ADM 3.3.14)
$; F^{\prime}{ }_{\text {cy6063 }}=16.000 \mathrm{ksi}$
$; \mathrm{B}_{\mathrm{c}}=\mathrm{F}^{\prime}{ }_{\mathrm{cy} 6063}$ * $\left(1+\left(\mathrm{F}^{\prime}{ }_{\mathrm{cy} 6063} / 2250 \mathrm{ksi}\right)^{5}\right)=17.349 \mathrm{ksi} \quad ;($ Table 3.3-4 ADM $)$
$; \mathrm{D}_{\mathrm{e}}=\mathrm{B}_{\mathrm{c}} / 10 \mathrm{ksi}{ }^{*}\left(\mathrm{~B}_{\mathrm{c}} / \mathrm{E}_{6063}\right)^{0.5}=0.072$
; $\mathrm{n}_{\mathrm{y}}=1.65$
$; S_{1}=\left(B_{c}-F^{\prime}{ }_{c y 6063} /\left(1.6{ }^{*} D_{c}\right)\right)^{2} \quad ; \quad S_{1}=307234091348490$.
; $\mathrm{C}_{\mathrm{c}}=1$ in
$; S_{2}=\left(C_{c} / 1.6\right)^{2}=0.003$
; $\mathrm{L}=42$ in
; Shorz $1500=0.347$ in 3
; IhorZ1500 = 0.3474 in 4
$\mathrm{L}=3.500 \mathrm{ft}$;
;L * Shorz1500 / (0.5 * $\left.{ }^{\text {IhorZ } 1500}\right)^{5}=0.243$
$; \mathrm{F}_{\mathrm{c}}=\mathrm{Fty}_{\mathrm{y} 6063} / \mathrm{n}_{\mathrm{y}}=9.697 \mathrm{ksi}$
; $\mathrm{f}_{\mathrm{c}}=1382 \mathrm{lbs} / .484 \mathrm{in}^{2}=2.855 \mathrm{ksi}$;okay (1500 S top rail or larger at the 42 " height and 225 lbs tension in cables)

Use 1500 or 1500R top rails for short spans only (39" for 1500, 44" for 1500R) and use 3000 series top rails for spans upto 54 inches.

James G. Pierson, Inc.	Project	Cable Railing Systems
Consulting Structural Engineers 610 S.w. Alder, Suite 918 Portland, Oregon 97205 Tel: (503) 226-1286 Fax: (503) 226-3130	Location	Residential
	Client	Railpro

Posts

System uses both Superpost Residential Posts (By Railcraft) or Termination posts at ends (Die \# VH-61957) for 36 " height

$$
; \mathrm{H}_{36}=36 \text { in } ; \mathrm{H}_{42}=42 \text { in }
$$

Intermediate posts (not used for cable termination)
Residentail Post (Superpost)
$; S_{x 1}=.43314 \mathrm{in}^{3}$

For 36 " tall posts, 4.5 ft max spacing $; \mathrm{L}_{6}=54 \mathrm{in}$

Per IRC ; $\mathrm{M}_{1}=200 \mathrm{lbs}$ * $\mathrm{H}_{36}=\mathbf{7 2 0 0 . 0 0 0} \mathrm{lb}$ _in

For 42 " tall posts, 4.5 ft max spacing ; $\mathrm{L}_{5}=54 \mathrm{in}$

Per IRC ; $\mathrm{M}_{3}=200 \mathrm{lbs} * \mathrm{H}_{42}=8400.000 \mathrm{lb}$ _in

Residential - 36 " height
; $\mathrm{F}_{\mathrm{b} 1}=\mathrm{M}_{1} / \mathrm{S}_{\mathrm{x} 1}=16622.801 \mathrm{psi}$;

Commercial - 42" height
; $\mathrm{F}_{\mathrm{b} 3}=\mathrm{M}_{3} / \mathrm{S}_{\mathrm{x} 1}=19393.268 \mathrm{psi}$;

Allowable; $\mathrm{F}_{\mathrm{b}}=19.487 \mathrm{ksi}$

Post good for either height and bending

Termination posts (used for cable termination)

1" x 3" CABLE POST 6005A-T6 Aluminum
$; S_{y 1}=1.21016 \mathrm{in}^{3}$
$; \mathrm{S} x \mathrm{x} 1=0.87144 \mathrm{in}^{3}$

Out of plane loading
For 36 " tall posts, 4.5 ft max spacing $; \mathrm{L}_{6}=54 \mathrm{in}$

Per IRC ; $\mathrm{M}_{1}=200 \mathrm{lbs}$ * $\mathrm{H}_{36}=\mathbf{7 2 0 0 . 0 0 0} \mathrm{lb}$ in ;at base connection
$; \mathrm{M}_{5}=200 \mathrm{lbs}$ * $\mathrm{H}_{36} / 2=3600.000 \mathrm{lb}$ in ;at mid-height

For 42" tall posts, 4.5 ft max spacing $; \mathrm{L} 5=54 \mathrm{in}$

Per IRC ; $\mathrm{M}_{3}=200 \mathrm{lbs} * \mathrm{H}_{42}=8400.000 \mathrm{lb}$ in ;at base connection

James G. Pierson, Inc. Consulting Structural Engineers 610 S.W. Alder, Suite 918 Portland, Oregon 97205 Tel: (503) 226-1286 Fax: (503) 226-3130	${ }^{\text {Project }}$	Cable Railing Systems	Job no.
	Location	Residential	Date $\quad 12 / 14 / 2017$
	Client	Railpro	Sheet no. Page 10 of 30

```
;M6 = 200 lbs * H42/2 = 4200.000 lb_in ;at mid-height
Residential - 36" height
;Fb1 = M1/ Sxx1 = 8262.187 psi ; at bottom connection
;F
Commercial - 42" height
;Fb3 = M M / Sxx1 = 9639.218 psi ; at bottom connection
;Fb6 = M6/ Sxx1 = 4819.609 psi ; at midheight
Allowable; F}\mp@subsup{\mathrm{ b6005T6 }}{=19.487 ksi}{
Check bending in other direction due to Cable tension bending (in-plane)
For 225 Ibs tension
For 36" tall posts ; M2 = 926 lb_ft
For 42" tall posts ; M4 = 1287 lb_ft
Residential - 36" height
; F
Commercial - 42" height
;Fb4 = M4/ Sy1 = 12.762 ksi ;
Allowable; F}\mp@subsup{F}{\textrm{b}005T6}{}=19.487\textrm{ksi
36" Posts combined Loading (check at midheight):
;Fb5 / F
36" tall Post good for tension created bending plus guardrail forces.
42" Posts combined Loading (checked at midheight):
; Fb6 / Fb6005T6 + F Fb4 }/\mp@subsup{F}{b6005T6 = 0.902}{
42" tall Post okay for tension created bending plus guardrail forces.
```

James G. Pierson, Inc. Consulting Structural Engineers 610 S.W. Alder, Suite 918 Portland, Oregon 97205 Tel: (503) 226-1286 Fax: (503) 226-3130	${ }^{\text {Project }}$	Cable Railing Systems	Job no.
	Location	Residential	Date $\quad 12 / 14 / 2017$
	Client	Railpro	Sheet no. Page 11 of 30

TOP MOUNTED BASEPLATE

Posts attach to plate at interior holes and is attached to substrate (deck) at hole located near the edges.

IRC ;OTM $36=200 \mathrm{lbs} *\left(\mathrm{H}_{36}+.375 \mathrm{in}\right) ; \quad \mathrm{OTM}_{36}=7275.000 \mathrm{lb}$ _in

Tension in post base screw connections is $; T=O T M 36 /\left(1.25 \mathrm{in}^{*} 2\right) ; \mathrm{T}=2910.000 \mathrm{lbs}$

SAE Grade 5 screws ; $F_{\text {tscrew }}=120 \mathrm{ksi}$ *. $75=90.000 \mathrm{ksi}$
;Ascrewreg = T / Ftscrew $\quad ; A_{\text {screwreg }}=0.032$ in 2

Try $1 / 4$ " diameter screws $\quad ; \mathrm{A}_{\text {screw }}=0.0318 \mathrm{in}^{2}$
;Fvscrew $=120 \mathrm{ksi}{ }^{*} .60 / 3^{*} .7 ; F_{\text {vscrew }}=16.800 \mathrm{ksi}$

Use (2) $1 / 4$ " diameter $x 2 "$ long SAE Grade 5 (min.) self tapping Torx drive flate head screws ($11 / 2$ min. Embedment into post)

Baseplate for 42" tall posts

Per IRC ;OTM $42=200 \mathrm{lbs}^{*}\left(\mathrm{H}_{42}+.375 \mathrm{in}\right) ; \mathrm{OTM}_{42}=8475.000 \mathrm{lb}$ in

Tension in post base screw connections is ; $\mathrm{T}_{42}=\mathrm{OTM}_{42} /(1.25 \mathrm{in} * 3) ; \mathrm{T}_{42}=2260.000 \mathrm{lbs}$

SAE Grade 5 screws ; $F_{\text {tscrew }}=120 \mathrm{ksi}$ * $.75=90.000 \mathrm{ksi}$
;Ascrewreg = T / F tscrew $\quad ;$ Ascrewreg $=0.032$ in 2

Try $1 / 4$ " diameter screws $\quad ; \mathrm{A}_{\text {screw }}=0.0318 \mathrm{in}^{2}$
; $\mathrm{F}_{\mathrm{vscrew}}=120 \mathrm{ksi}$ * $.60 / 3$ * .7 ; $\mathrm{F}_{\text {vscrew }}=16.800 \mathrm{ksi}$

Use (2) $1 / 4$ " diameter x 2 " long SAE Grade 5 (min.) self tapping Torx drive flate head screws ($11 / 2$ " min. Embedment into post)

Use $5 / 16$ " diameter screws (greater capacity than $1 / 4$ ")

CHECK TOP MOUNTED BASE PLATES FOR BENDING

$3 / 8 " \times 4 " \times 4$ " plate (wood connections)
;Tplate $=$ OTM42 $/ 3.375 \mathrm{in}=2511.111 \mathrm{lb}$
;Bending $=\mathrm{OTM}_{42} /\left(4 \mathrm{in} *(4 \mathrm{in})^{2} / 6\right) ;$ Bending $=794.531 \mathrm{psi}$
; $\mathrm{d}=2$ in
;T = Bending * d / 2 * $4 \mathrm{in} ; \mathrm{T}=3178.125 \mathrm{lb}$

Plate bending is maximum below edge of post or 1.18 " from plate edge

James G. Pierson, Inc. Consulting Structural Engineers 610 S.W. Alder, Suite 918 Portland, Oregon 97205 Tel: (503) 226-1286 Fax: (503) 226-3130	Project	Cable Railing Systems	Job no.
	Location	Residential	Date $\quad 12 / 14 / 2017$
	Client	Railpro	Sheet no. Page 12 of 30

```
; P2 = (2 in - 1.18 in) / 2 in * Bending = 325.758 psi
;Mmax = ((P2 * 1.18 in 2/ 2) + ((Bending - P2 )* 1.18 in 
;Mmax = 1506.325 lb_in
; Fb = Mmax *6 / (4 in *. .375 in *. }375\textrm{in})=16067.470 ps
    Okay
```

try $1 / 4^{\prime \prime} \times 4$ " $\times 4$ " plate
; $\mathrm{T}_{\text {plate }}=\mathrm{OTM}_{42} / 3.375 \mathrm{in}=\mathbf{2 5 1 1 . 1 1 1} \mathrm{lb}$
;Bending $=\mathrm{OTM}_{42} /\left(4 \mathrm{in} *(4 \mathrm{in})^{2} / 6\right) ;$ Bending $=794.531 \mathrm{psi}$
; $\mathrm{d}=2$ in
;T = Bending * d / 2 * $4 \mathrm{in} ; \mathrm{T}=3178.125 \mathrm{lb}$

Plate bending is maximum below edge of post or 1.18 " from plate edge
$; \mathrm{P}_{2}=(2 \mathrm{in}-1.18 \mathrm{in}) / 2 \mathrm{in}$ * Bending $=325.758 \mathrm{psi}$
$; M \max =\left(\left(\mathrm{P}_{2} \text { * } 1.18 \mathrm{in}^{2} / 2\right)+\left(\left(\text { Bending }-\mathrm{P}_{2}\right)^{*} 1.18 \mathrm{in}^{2} /(2) *(2 / 3)\right)\right)^{*} 4$ in
;Mmax = 1506.325 lb _in
; $\mathrm{Fb}_{\mathrm{b}}=\mathrm{Mmax}$ *6 / (4 in * . 25 in * . 25 in) $=36151.807 \mathrm{psi}$

No Good - Need the 3/8" plate thickness
try 3/8" x 5" x 5" baseplate (concrete connections)
; $\mathrm{T}_{\text {plate }}=\mathrm{OTM}_{42} / 4.375 \mathrm{in}=1937.143 \mathrm{lb}$
;Bending $=\mathrm{OTM}_{42} /\left(5 \mathrm{in}^{*}(5 \mathrm{in})^{2} / 6\right)$; Bending $=406.800 \mathrm{psi}$
; $\mathrm{d}=2.5$ in
;T = Bending * d / 2 * $5 \mathrm{in} ; \mathrm{T}=2542.500 \mathrm{lb}$

Plate bending is maximum below edge of post or 1.68 " from plate edge

```
; P2 = (2.5 in - 1.68 in) / 2.5 in * Bending = 133.430 psi
;Mmax = ((P2 * 1.68 in 2 / 2) + ((Bending - P2 )* 1.68 in 
;Mmax = 1325.843 lb_in
; Fb = Mmax *6 / (5 in *. }375\mathrm{ in * . }375\textrm{in})=11313.857 ps
Okay
```

James G. Pierson, Inc.	Project	Cable Railing Systems
Consulting Structural Engineers 610 S.w. Alder, Suite 918 Portland, Oregon 97205 Tel: (503) 226-1286 Fax: (503) 226-3130	Location	Residential
	Client	Railpro

CHECK 6x5 BASE PLATE FOR BENDING

```
3/8" x 6" x 5" plate
;}\mp@subsup{T}{\mathrm{ plate2 }}{= OTM42 / 4.38 in = 1934.932 lb
;Bending2 = OTM42 / (6 in * (5 in)}\mp@subsup{)}{}{2}/6); Bending2 = 339.000 psi
;d=2.5 in
;T = Bending2 * d / 2 * 6 in; T = 2542.500 lb
```

Plate bending is maximum below edge of post or 1.75 " from plate edge
$; \mathrm{P}_{3}=(2.5 \mathrm{in}-.75 \mathrm{in}) / 2.5 \mathrm{in}$ * Bending $=284.760 \mathrm{psi}$
;Mmax2 $=\left(\left(\mathrm{P}_{3}{ }^{*} .375 \mathrm{in}^{2} / 2\right)+\left(\left(\text { Bending }-\mathrm{P}_{3}\right)^{*} .375 \mathrm{in}^{2} /(2){ }^{*}(2 / 3)\right)\right)^{*} 5 \mathrm{in}$
;Mmax2 = 343.237 lb _in
$; \mathrm{F}_{\mathrm{b}}=\mathrm{Mmax} 2 * 6 /(5 \mathrm{in} * .375 \mathrm{in}$ * .375 in$)=2928.960 \mathrm{psi}$
Okay

James G. Pierson, Inc. Consulting Structural Engineers 610 S.W. Alder, Suite 918 Portland, Oregon 97205 Tel: (503) 226-1286 Fax: (503) 226-3130	Project	Cable Railing Systems	Job no.
	Location	Residential	Date $\quad 12 / 14 / 2017$
	Client	Railpro	Sheet no. Page 14 of 30

BASE PLATE ATTACHMENT - TYP LINE POST
$4 \times 4 \times 3 / 8 "$ Plate

Anchor Tension ; AT = OTM $36 / 3.375 \mathrm{in} ; \mathrm{AT}=2155.556 \mathrm{lb}$
2 anchors per side ; Atbolt $=$ AT $/ 2=1077.778 \mathrm{lb}$

Wood:

Try 3/8" diameter lag bolts and assume Douglas Fir
$; T_{\text {allow }}=305 \mathrm{lb} / \mathrm{in}$ * 1.6 * $2.78 \mathrm{in} ;, 5$ " long lag, $225 / 32$ " embed 1.6 Cd wood factor $; T_{\text {allow }}=1356.640 \mathrm{lb}$

Use $3 / 8^{\prime \prime}$ diameter x 5 " embedment lag screws (4 corners)

Try 3/8" diameter lag bolts and assume Hem Fir PT
$; T_{\text {allow }}=269 \mathrm{lb} / \mathrm{in}$ * $1.6^{*} 3.28 \mathrm{in} ;, 6$ " long lag, $39 / 32$ " embed 1.6 Cd wood factor ; $\mathrm{T}_{\text {allow }}=1411.712 \mathrm{lb}$

Use 3/8" diameter x 6" embedment lag screws (4 corners)

Try 7/16" diameter lag bolts and assume Hem Fir PT
$; T_{\text {allow }}=302 \mathrm{lb} / \mathrm{in}$ * 1.6 * $2.22 \mathrm{in} ;, 4$ " long lag, $27 / 32$ " embed 1.6 Cd wood factor $; T_{\text {allow }}=1072.704 \mathrm{lb}$

Use 7/16" diameter x 4" embedment lag screws (4 corners)

Try \#14 x 5" stainless steel wood screws and assume Hem Fir PT
;Tallow $=146 \mathrm{lb} / \mathrm{in} * 1.6$ * $5 \mathrm{in} ;, 5$ " long screws, 5 " embed 1.6 Cd wood factor ; $\mathrm{Tallow}=1168.000 \mathrm{lb}$

Just works \#14-5" wood screws (4 corners)

Try \#14 x 5" stainless steel wood screws and assume Douglas Fir
$; T_{\text {allow }}=172 \mathrm{lb} / \mathrm{in}$ * $1.6^{*} 5 \mathrm{in} ;, 5$ " long screws, 5 " embed 1.6 Cd wood factor $; \mathrm{T}_{\text {allow }}=1376.000 \mathrm{lb}$

Use \#14-5" wood screws (4 corners)
$5 \times 5 \times 3 / 8$ " Plate

Anchor Tension ; AT = OTM42 / $4.375 \mathrm{in} ; \mathrm{AT}=1937.143 \mathrm{lb}$
2 anchors per side ; Atbolt = AT / $2=968.571 \mathrm{lb}$

Try \#14 x 5" stainless steel wod screws and assume Hem Fir PT
$; T_{\text {allow }}=146 \mathrm{lb} / \mathrm{in}^{*} 1.6^{*} 5 \mathrm{in} ;, 5$ " long lag, 5 " embed 1.6 Cd wood factor $; \mathrm{T}_{\text {allow }}=1168.000 \mathrm{lb}$

Use \#14 x 5" embedment ss wood screws (4 corners)

James G. Pierson, Inc. Consulting Structural Engineers 610 S.W. Alder, Suite 918 Portland, Oregon 97205 Tel: (503) 226-1286 Fax: (503) 226-3130	Project	Cable Railing Systems	Job no.
	Location	Residential	Date $\quad 12 / 14 / 2017$
	Client	Railpro	Sheet no. Page 15 of 30

Base plate is $4^{\prime \prime} \times 4^{\prime \prime} \times 3 / 8^{\prime \prime}$

Base plate is $4^{\prime \prime} \times 6^{\prime \prime} \times 3 / 8^{\prime \prime}$

James G. Pierson, Inc.\qquad Tel: (503) 226-1286 Fax: (503) 226-3130 9720	${ }^{\text {mosedet }}$ Cabe Railing Systems	bome
	Residential	12/142017
	${ }^{\text {ciele }}$ Ralipro	Page 16 of 30

BASE PLATE ATTACHMENT - TERMINATION POST

```
6x4x3/8" Plate
Anchor Tension ; AT = OTM36 / 3.375 in ; AT = 2155.556 lb
2 anchors per side ; Atbolt = AT / 2 = 1077.778 lb
Shear due to 175 lbs in cables ;}\mp@subsup{\textrm{V}}{\textrm{c}}{=5* 175 lbs = 875.000 lbs
Shear due to fall protection;};\mp@subsup{\textrm{V}}{\textrm{f}}{\prime}=200\textrm{lbs
```

Try \#14 x 5" stainless steel wood screws and assume Hem Fir PT
; $T_{\text {allow }}=146 \mathrm{lb} / \mathrm{in}^{*} 1.6$ * $5 \mathrm{in} ;$; 5 " long lag, 5 " embed 1.6 Cd wood factor ; $\mathrm{T}_{\text {allow }}=1168.000 \mathrm{lb}$
;Vallow $=196 \mathrm{lbs}$ * 4 * 1.6 ; 4 screws total, 1.6 Cd wood factor ; ; Vallow $=1254.400 \mathrm{lb}$
No Good

Try 3/8" diameter lag bolts and assume Hem Fir PT

```
;Tallow = 269 lb/in * 1.6 * 3.82 in ;, 6" long lag, 3 25/32" embed 1.6 Cd wood factor ;Tallow = 1644.128 lb
;Vallow = 270 lbs * 4 * 1.6 ; 4 lags total, 1.6 Cd wood factor ; ;Vallow = 1728.000 lb
```

Atbolt $/ T_{\text {allow }}=0.656$
$\left(\mathrm{V}_{\mathrm{c}}+\mathrm{V}_{\mathrm{f}}\right) / \mathrm{V}_{\text {allow }}=0.622$

Use $3 / 8^{\prime \prime}$ diameter x 7 " embedment lag screws (4 corners)

Try 3/8" diameter lag bolts and assume Douglas Fir

;Tallow $=305 \mathrm{lb} / \mathrm{in}^{*} 1.6$ * $3.82 \mathrm{in} ;$, 6 " long lag, $325 / 32$ " embed 1.6 Cd wood factor ; $\mathrm{Tallow}=1864.160 \mathrm{lb}$;Vallow $=280 \mathrm{lbs}$ * 4 * 1.6 ; 4 lags total, 1.6 Cd wood factor ; ;Vallow $=1792.000 \mathrm{lb}$

Atbolt $/ T_{\text {allow }}=0.578$
$\left(\mathrm{V}_{\mathrm{c}}+\mathrm{V}_{\mathrm{f}}\right) / \mathrm{V}_{\text {allow }}=0.600$

Use $3 / 8^{\prime \prime}$ diameter $\times 7^{\prime \prime}$ embedment lag screws (4 corners)

James G. Pierson, Inc.	Project	Cable Railing Systems
Consulting Structural Engineers 610 S.w. Alder, Suite 918 Portland, Oregon 97205 Tel: (503) 226-1286 Fax: (503) 226-3130	Location	Residential
	Client	Railpro

FASCIA BRACKET CONNECTION - LINE POST

$6 \times 4 \times 3 / 8$ " Plate

Anchor Tension ; AT = OTM 42 / 4.2 in ; AT $=2017.857 \mathrm{lb}$
2 side by side anchors per bracket ; Atbolt $=$ AT $/ 2=1008.929 \mathrm{lb}$

Wood:

Try 3/8" diameter lag bolts and assume Douglas Fir
;Tallow $=305 \mathrm{lb} / \mathrm{in}$ * 1.6 * $2.78 \mathrm{in} ;$, 5 " long lag, $225 / 32$ " embed 1.6 Cd wood factor ;Tallow $=1356.640 \mathrm{lb}$

Use $3 / 8^{\prime \prime}$ diameter x 5 " embedment lag screws (4 corners)

Try 3/8" diameter lag bolts and assume Hem Fir PT
$; T_{\text {allow }}=269 \mathrm{lb} / \mathrm{in}$ * 1.6 * $3.28 \mathrm{in} ;, 6$ " long lag, $39 / 32$ " embed 1.6 Cd wood factor ; $\mathrm{Tallow}=1411.712 \mathrm{lb}$
;Vallow $=270 \mathrm{lbs} * 4$ * $1.6 ; 4$ lags total, 1.6 Cd wood factor ; ; Vallow $=1728.000 \mathrm{lb}$

Use $3 / 8$ " diameter x 6 " embedment lag screws (4 corners)

Try 7/16" diameter lag bolts and assume Hem Fir PT
;Tallow = $302 \mathrm{lb} / \mathrm{in}$ * 1.6 * 2.22 in ;, 4 " long lag, $27 / 32$ " embed 1.6 Cd wood factor ;Tallow $=1072.704 \mathrm{lb}$

Use 7/16" diameter x 4" embedment lag screws (4 corners)

Try \#14 x 5" stainless steel wood screws and assume Hem Fir PT
$; \mathrm{T}_{\text {allow }}=146 \mathrm{lb} / \mathrm{in}$ * 1.6 * $5 \mathrm{in} ;$; 5 " long screws, 5 " embed 1.6 Cd wood factor ; $\mathrm{Tallow}=1168.000 \mathrm{lb}$

Just works \#14-5" wood screws (4 corners)

Try \#14 x 5" stainless steel wood screws and assume Douglas Fir
;Tallow $=172 \mathrm{lb} / \mathrm{in}^{*} 1.6$ * $5 \mathrm{in} ;$, 5 " long screws, 5 " embed 1.6 Cd wood factor ; $\mathrm{Tallow}=1376.000 \mathrm{lb}$

Use \#14-5" wood screws (4 corners)

James G. Pierson, Inc. Consulting Structural Engineers 610 S.W. Alder, Suite 918 Portland, Oregon 97205 Tel: (503) 226-1286 Fax: (503) 226-3130	Project	Cable Railing Systems	Job no.
	${ }^{\text {Location }}$	Residential	Date $\quad 12 / 14 / 2017$
	Client	Railpro	Sheet no. Pagee 18 of 30

FASCIA BRACKET - TERMINATION POST

$6 \times 4 \times 3 / 8$ " Plate

Anchor Tension ; AT = OTM42 / 4.2 in ; AT = 2017.857 lb
2 side by side anchors per bracket ; Atbolt = AT / $2=1008.929 \mathrm{lb}$
Shear due to 175 lbs tension in cables $; \mathrm{V}_{\mathrm{c}}=5$ * $175 \mathrm{lbs}=875.000 \mathrm{lbs}$
Shear due to fall protection $; \mathrm{V}_{\mathrm{f}}=200 \mathrm{lbs}$

Wood:

Try 3/8" diameter lag bolts and assume Douglas Fir
;Tallow $=305 \mathrm{lb} / \mathrm{in}$ * 1.6 * $2.78 \mathrm{in} ;$; 5 " long lag, $225 / 32$ " embed 1.6 Cd wood factor ;Tallow = 1356.640 lb ;Vallow $=196$ lbs * 4 * 1.6 ; 4 screws total, 1.6 Cd wood factor ; ;Vallow $=1254.400 \mathrm{lb}$

Use $3 / 8^{\prime \prime}$ diameter x 5 " embedment lag screws (4 corners)

Try 3/8" diameter lag bolts and assume Hem Fir PT
; $T_{\text {allow }}=269 \mathrm{lb} / \mathrm{in}$ * 1.6 * $3.28 \mathrm{in} ;$, 6 " long lag, $39 / 32$ " embed 1.6 Cd wood factor ; $\mathrm{Tallow}=1411.712 \mathrm{lb}$;Vallow $=270 \mathrm{lbs}$ * 4 * 1.6 ; 4 lags total, 1.6 Cd wood factor ; ;Vallow $=1728.000 \mathrm{lb}$

Use $3 / 8^{\prime \prime}$ diameter x 6 " embedment lag screws (4 corners)

Try 7/16" diameter lag bolts and assume Hem Fir PT
;Tallow = $302 \mathrm{lb} / \mathrm{in}$ * 1.6 * 2.22 in ;, 4 " long lag, $27 / 32$ " embed 1.6 Cd wood factor ;Tallow $=1072.704 \mathrm{lb}$

Use 7/16" diameter x 4" embedment lag screws (4 corners)

Try \#14 x 5" stainless steel wood screws and assume Hem Fir PT
;Tallow $=146 \mathrm{lb} / \mathrm{in}$ * 1.6 * $5 \mathrm{in} ;$; 5 " long screws, 5 " embed 1.6 Cd wood factor ; $\mathrm{Tallow}=1168.000 \mathrm{lb}$

Just works \#14-5" wood screws (4 corners)

Try \#14 x 5" stainless steel wood screws and assume Douglas Fir
;Tallow $=172 \mathrm{lb} / \mathrm{in}$ * 1.6 * $5 \mathrm{in} ;$; 5 " long screws, 5 " embed 1.6 Cd wood factor ; $\mathrm{Tallow}=1376.000 \mathrm{lb}$

Use \#14-5" wood screws (4 corners)

James G. Pierson, Inc. Consulting Structural Engineers 610 S.W. Alder, Suite 918 Portland, Oregon 97205 Tel: (503) 226-1286 Fax: (503) 226-3130	Project	Cable Railing Systems	Job no.
	Location	Residential	Date $\quad 12 / 14 / 2017$
	Client	Railpro	Sheet no. Page 19 of 30

BASE PLATE ATTACHMENTS - CONCRETE

Concrete:

Assume 6" minimum thick concrete - use Hilti HIT-HY 200 + HIT-Z-R Simpson 3/8" diameter strong bolts

See attached ACI 318 Appendix D calcs. and details.

James G. Pierson, Inc. Consulting Structural Engineers 610 S.W. Alder, Suite 918 Portland, Oregon 97205 Tel: (503) 226-1286 Fax: (503) 226-3130	Project	Cable Railing Systems	Job no.
	Location	Residential	Date $12 / 14 / 2017$
	Client	Railpro	Sheet no. Page 20 of 30

Company:	James G. Pierson, Inc	Page:	1
Specifier:	Golberg	Project:	Cable Railing
Address:	610 SW Alder \#918	Sub-Project I Pos. No.:	Line Post Base
Phone I Fax:	$503-226-1286 \mid$		Date:
E-Mail:			$12 / 14 / 2017$

Specifier's comments: IRC Code, 36" tall

1 Input data

Anchor type and diameter:
Effective embedment depth:
Material:
Evaluation Service Report:
Issued I Valid:
Proof:
Stand-off installation:
Anchor plate:
Profile:
Base material:
Installation:
Reinforcement:

Seismic loads (cat. C, D, E, or F)

HIT-HY 200 + HIT-Z-R 3/8
$\mathrm{h}_{\text {ef,opti }}=3.425 \mathrm{in} .\left(\mathrm{h}_{\text {ef, limitit }}=3.750 \mathrm{in}\right.$.)
A4
ESR-3187
SAFE:ET
11/1/2016 | 3/1/2018
Design method ACl 318-08 / Chem
$e_{b}=0.000$ in. (no stand-off); $t=0.375 \mathrm{in}$.
$l_{x} \times l_{y} \times t=5.000$ in. $\times 5.000$ in. $\times 0.375$ in.; (Recommended plate thickness: not calculated no profile
cracked concrete, $2500, \mathrm{f}_{\mathrm{c}}{ }^{\prime}=2500 \mathrm{psi} ; \mathrm{h}=6.000 \mathrm{in}$., Temp. short/long: $32 / 32^{\circ} \mathrm{F}$
hammer drilled hole, Installation condition: Dry
tension: condition B, shear: condition B; no supplemental splitting reinforcement present edge reinforcement: none or < No. 4 bar
no

Geometry [in.] \& Loading [lb, in.Ib]

www.hilti.us
Profis Anchor 2.7.5

Company:	James G. Pierson, Inc	Page:	2
Specifier:	Golberg	Project:	Cable Railing
Address:	610 SW Alder \#918	Sub-Project I Pos. No.:	Line Post Base
Phone I Fax:	$503-226-1286$	Date:	$12 / 14 / 2017$

503-226-1286 |

Sub-Project I Pos. No.: Line Post Base

Date: 12/14/2017
E-Mail:

2 Load case/Resulting anchor forces

Load case: Design loads

Anchor reactions [lb]
Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	1470	80	0	80
2	1470	80	0	80
3	0	80	0	80
4	0	80	0	80

max. concrete compressive strain: 0.24 [\%o]
max. concrete compressive stress: 1029 [psi]
resulting tension force in (x/y)=(0.000/-1.800): $2939[\mathrm{lb]}$
resulting compression force in (x / y) $=(0.000 / 2.119$): 2939 [lb]

3 Tension load

	Load $\mathbf{N}_{\mathrm{ua}}[\mathrm{lb}]$	Capacity $\boldsymbol{\phi} \mathbf{N}_{\mathrm{n}}[\mathrm{lb}]$	Utilization $\boldsymbol{\beta}_{\mathbf{N}}=\mathbf{N}_{\mathrm{ua}} / \boldsymbol{\phi} \mathbf{N}_{\mathrm{n}}$	Status
Steel Strength*	1470	4749	31	OK
Pullout Strength*	1470	5169	29	OK
Sustained Tension Load Bond Strength*	N / A	N / A	N / A	N / A
Concrete Breakout Strength**	2939	2957	100	OK
anchor having the highest loading	$ *$ anchor group (anchors in tension)			

3.1 Steel Strength
$\mathrm{N}_{\mathrm{sa}}=\mathrm{ESR}$ value refer to ICC-ES ESR-3187
$\phi \mathrm{N}_{\mathrm{sa}} \geq \mathrm{N}_{\mathrm{ua}} \quad$ ACl 318-08 Eq. (D-1)
Variables

$\mathrm{A}_{\text {se, } \mathrm{N}}\left[\mathrm{in} .{ }^{2}\right]$	$\mathrm{f}_{\text {utat }}[\mathrm{psi}]$
0.08	94200

Calculations

$\mathrm{N}_{\mathrm{sa}}[\mathrm{lb}]$
7306

Results

$\mathrm{N}_{\text {sa }}[\mathrm{lb}]$	$\phi_{\text {steel }}$	$\phi \mathrm{N}_{\text {sa }}[\mathrm{lb}]$	$\mathrm{N}_{\mathrm{ua}}[\mathrm{lb}]$
7306	0.650	4749	1470

3.2 Pullout Strength

$\mathrm{N}_{\mathrm{pn}}=\mathrm{N}_{\mathrm{p}} \quad$ refer to ICC-ES ESR-3187
$\phi \mathrm{N}_{\mathrm{pn}} \geq \mathrm{N}_{\text {ua }} \quad$ ACl 318-08 Eq. (D-1)
Variables
$\frac{\mathrm{N}_{\mathrm{p}}[\mathrm{lb}]}{7952}$

Calculations

\qquad
Results

$\mathrm{N}_{\mathrm{pn}}[\mathrm{lb}]$	ϕ concrete	$\phi \mathrm{N}_{\mathrm{pn}}[\mathrm{lb}]$	$\mathrm{N}_{\mathrm{ua}}[\mathrm{lb}]$
7952	0.650	5169	1470

www.hilti.us
Profis Anchor 2.7.5

Company:	James G. Pierson, Inc	Page:	3
Specifie:	Golberg	Project:	Cable Railing
Address:	610 SW Alder \#918	Sub-Project I Pos. No.:	Line Post Base
Phone I Fax:	$503-226-1286 \mid$	Date:	$12 / 14 / 2017$
E-Mail:			

E-Mail:

3.3 Concrete Breakout Strength

$N_{c b g}=\left(\frac{A_{N c}}{A_{N c 0}}\right) \psi_{e c, N} \psi_{e d, N} \psi_{c, N} \psi_{c p, N} N_{b}$
$\phi \mathrm{N}_{\mathrm{cbg}} \geq \mathrm{N}_{\mathrm{ua}}$
$A_{\text {Nc }} \quad$ see ACl 318-08, Part D.5.2.1, Fig. RD.5.2.1(b)
$A_{\text {Nco }}=9 h_{\text {ef }}^{2}$
$\psi_{\mathrm{ec}, \mathrm{N}}=\left(\frac{1}{1+\frac{2 \mathrm{e}_{\mathrm{N}}^{\prime}}{3 \mathrm{~h}_{\mathrm{ef}}}}\right) \leq 1.0$
$\psi_{\text {ed, }, \mathrm{N}}=0.7+0.3\left(\frac{\mathrm{c}_{\mathrm{a}, \text { min }}}{1.5 \mathrm{~h}_{\mathrm{ef}}}\right) \leq 1.0$
$\psi_{\mathrm{cp}, \mathrm{N}}=\operatorname{MAX}\left(\frac{\mathrm{c}_{\mathrm{a}, \text { min }}}{\mathrm{C}_{\mathrm{ac}}}, \frac{1.5 \mathrm{~h}_{\mathrm{ef}}}{\mathrm{C}_{\mathrm{ac}}}\right) \leq 1.0$
$N_{b} \quad=k_{c} \lambda \sqrt{f_{c}^{\top}} h_{e f}^{1.5}$

ACl $318-08$ Eq. (D-5)
ACI 318-08 Eq. (D-1)
ACl 318-08 Eq. (D-6)
ACI 318-08 Eq. (D-9)

ACl 318-08 Eq. (D-11)
ACl 318-08 Eq. (D-13)
ACI 318-08 Eq. (D-7)

Variables

h_{ef} [in.]	$\mathrm{e}_{\mathrm{c} 1, \mathrm{~N}}$ [in.]	$\mathrm{e}_{\mathrm{e} 2, \mathrm{~N}}$ [in.]	$\mathrm{c}_{\mathrm{a}, \text { min }}$ [in.]	$\psi_{\mathrm{c}, \mathrm{N}}$
3.425	0.000	0.000	2.500	1.000

C_{ac} [in.]	k_{c}	λ	$\dot{f}_{\mathrm{c}}[\mathrm{psi}]$
9.071	17	1	2500

Calculations

$\mathrm{A}_{\text {Nc }}\left[\right.$ in. $\left.{ }^{2}\right]$	$\mathrm{A}_{\text {Nco }}\left[\mathrm{in}{ }^{2}{ }^{2}\right]$	$\psi_{\text {ect,N }}$	$\psi_{\text {ec } 2, \mathrm{~N}}$	$\psi_{\text {ed,N }}$	$\psi_{\text {ep,N }}$	$\mathrm{N}_{\mathrm{b}}[\mathrm{lb}]$
104.82	103.96	1.000	1.000	0.847	1.000	5326

Results

$\mathrm{N}_{\text {cbg }}[\mathrm{Ib}]$	$\phi_{\text {concrete }}$	$\phi \mathrm{N}_{\text {cbg }}$ [lb$]$	$\mathrm{N}_{\mathrm{ua}}[\mathrm{lb}]$
4549	0.650	2957	2939

Company:	James G. Pierson, Inc	Page:	4
Specifier:	Golberg	Project:	Cable Railing
Address:	610 SW Alder \#918	Sub-Project I Pos. No.:	Line Post Base
Phone I Fax:	$503-226-1286 \mid$		
E-Mail:			

4 Shear load

4.1 Steel Strength

$\mathrm{V}_{\mathrm{sa}}=\left(0.6 \mathrm{~A}_{\text {se }, \mathrm{V}} \mathrm{f}_{\mathrm{uta}}\right) \quad$ refer to ICC-ES ESR-3187
$\phi \mathrm{V}_{\text {stel }} \geq \mathrm{V}_{\text {ua }} \quad$ ACl 318-08 Eq. (D-2)

Variables

$\mathrm{A}_{\text {se, }, ~}\left[\right.$ in. $\left.{ }^{2}\right]$	$\mathrm{f}_{\text {uta }}[\mathrm{psi}]$	$\left(0.6 \mathrm{~A}_{\text {se, } \mathrm{V}} \mathrm{f}_{\text {uta }}\right)[\mathrm{lb}]$
0.08	94200	4384

Calculations

$$
\mathrm{V}_{\mathrm{sa}}[\mathrm{lb}]
$$

$$
4384
$$

Results

$\mathrm{V}_{\text {sa }}[\mathrm{lb}]$	$\phi_{\text {steel }}$	$\phi \mathrm{V}_{\text {sa }}[\mathrm{lb}]$	$\mathrm{V}_{\text {ua }}[\mathrm{lb}]$
4384	0.600	2630	80

4.2 Pryout Strength (Concrete Breakout Strength controls)

$\mathrm{V}_{\mathrm{cpg}}=\mathrm{k}_{\mathrm{cp}}\left[\left(\frac{\mathrm{A}_{\mathrm{Nc}}}{\mathrm{A}_{\mathrm{Nc} 0}}\right) \psi_{\text {ec,N}} \psi_{\text {ed, } \mathrm{N}} \psi_{\mathrm{c}, \mathrm{N}} \psi_{\mathrm{cp}, \mathrm{N}} \mathrm{N}_{\mathrm{b}}\right]$
$\phi \mathrm{V}_{\mathrm{cpg}} \geq \mathrm{V}_{\mathrm{ua}}$
$A_{N c}$ see ACI 318-08, Part D.5.2.1, Fig. RD.5.2.1(b)
$A_{\text {Nco }}=9 h_{\text {ef }}^{2}$
$\psi_{\mathrm{ec}, \mathrm{N}}=\left(\frac{1}{1+\frac{2 \mathrm{e}_{\mathrm{N}}^{\prime}}{3 \mathrm{~h}_{\mathrm{ef}}}}\right) \leq 1.0$
$\psi_{\text {ed,N }}=0.7+0.3\left(\frac{C_{a, \text { min }}}{1.5 h_{e f}}\right) \leq 1.0 \quad$ ACI 318-08 Eq. (D-11)
$\psi_{c p, N}=\operatorname{MAX}\left(\frac{\mathrm{C}_{\mathrm{a}, \min }}{\mathrm{C}_{\mathrm{ac}}}, \frac{1.5 \mathrm{~h}_{\mathrm{ef}}}{\mathrm{C}_{\mathrm{ac}}}\right) \leq 1.0 \quad$ ACl 318-08 Eq. (D-13)
$\mathrm{N}_{\mathrm{b}}=\mathrm{k}_{\mathrm{c}} \lambda \sqrt{\mathrm{f}_{\mathrm{c}}^{\prime}} \mathrm{h}_{\mathrm{ef}}^{1.5} \quad \mathrm{ACl}$ 318-08 Eq. (D-7)

ACI 318-08 Eq. (D-31)
ACI 318-08 Eq. (D-2)
ACl 318-08 Eq. (D-6)
ACI 318-08 Eq. (D-9)

Variables

k_{cp}	$\mathrm{h}_{\mathrm{ef}}[\mathrm{in}]$.	$\mathrm{e}_{\mathrm{c} 1, \mathrm{~N}}[\mathrm{in}]$.	$\mathrm{e}_{\mathrm{c} 2, \mathrm{~N}}[\mathrm{in}]$.	$\mathrm{c}_{\mathrm{a}, \min }$ [in.]
2	3.425	0.000	0.000	2.500
$\psi_{\mathrm{c}, \mathrm{N}}$	$\mathrm{c}_{\mathrm{ac}}[\mathrm{in}]$.	k_{c}	λ	$\mathrm{f}_{\mathrm{c}}^{\prime}[\mathrm{psi}]$
1.000	9.071	17	1	2500

Calculations

$\mathrm{A}_{\mathrm{Nc}}\left[\mathrm{in}.{ }^{2}\right]$	$\mathrm{A}_{\mathrm{Nco}}\left[\mathrm{in.}^{2}\right]$	$\psi_{\mathrm{ec} 1, \mathrm{~N}}$	$\psi_{\text {ec2,N}}$	$\psi_{\text {ed,N }}$	$\psi_{\mathrm{cp}, \mathrm{N}}$	$\mathrm{N}_{\mathrm{b}}[\mathrm{lb}]$
154.49	103.96	1.000	1.000	0.847	1.000	

Results

$\mathrm{V}_{\text {cpg }}[\mathrm{bb}]$	$\phi_{\text {concrete }}$	$\phi \mathrm{V}_{\text {cpg }}[\mathrm{lb}]$	$\mathrm{V}_{\text {ua }}[\mathrm{lb}]$
13409	0.700	9386	320

www.hilti.us

Company:	James G. Pierson, Inc	Page:	5
Specifier:	Golberg	Project:	Cable Railing
Address:	610 SW Alder \#918	Sub-Project I Pos. No.:	Line Post Base
Phone I Fax:	$503-226-1286 \mid$	Date:	$12 / 14 / 2017$

5 Combined tension and shear loads

β_{N}	β_{V}	ζ	Utilization $\beta_{\mathrm{N}, \mathrm{V}}[\%]$	Status
0.994	0.034	1.000	86	OK

$\beta_{\mathrm{NV}}=\left(\beta_{\mathrm{N}}+\beta_{\mathrm{V}}\right) / 1.2<=1$

6 Warnings

- The anchor design methods in PROFIS Anchor require rigid anchor plates per current regulations (ETAG 001/Annex C, EOTA TR029, etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered - the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Anchor calculates the minimum required anchor plate thickness with FEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid base plate assumption is valid is not carried out by PROFIS Anchor. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies when supplementary reinforcement is used. The Φ factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to your local standard.
- Design Strengths of adhesive anchor systems are influenced by the cleaning method. Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions
- The ACI 318-08 version of the software does not account for adhesive anchor special design provisions corresponding to overhead applications.
- Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard!

Fastening meets the design criteria!

Company:	James G. Pierson, Inc	Page:	6
Specifier:	Golberg	Project:	Cable Railing
Address:	610 SW Alder \#918	Sub-Project I Pos. No.:	Line Post Base
Phone I Fax:	$503-226-1286 \mid$	Date:	$12 / 14 / 2017$
E-Mail:			

7 Installation data

Anchor plate, steel: -
Profile: no profile
Hole diameter in the fixture: $\mathrm{d}_{\mathrm{f}}=0.438$ in.
Plate thickness (input): 0.375 in.
Recommended plate thickness: not calculated
Drilling method: Hammer drilled
Cleaning: No cleaning of the drilled hole is required

Anchor type and diameter: HIT-HY 200 + HIT-Z-R 3/8
Installation torque: 177.015 in .lb
Hole diameter in the base material: 0.438 in.
Hole depth in the base material: 4.425 in.
Minimum thickness of the base material: 5.675 in.

7.1 Recommended accessories

Drilling

- Suitable Rotary Hammer
- Properly sized drill bit

Cleaning

- No accessory required

Setting

- Dispenser including cassette and mixer
- Torque wrench

Coordinates Anchor in.

Anchor	\mathbf{x}	\mathbf{y}	$\mathbf{c}_{-\mathbf{x}}$	$\mathbf{c}_{+\mathbf{x}}$	$\mathbf{c}_{-\mathbf{y}}$	$\mathbf{c}_{+\mathrm{y}}$
1	-1.800	-1.800	-	-	2.500	-
2	1.800	-1.800	-	-	2.500	-
3	-1.800	1.800	-	-	6.100	-
4	1.800	1.800	-	-	6.100	-

www.hilti.us

Company:	James G. Pierson, Inc	Page:	7
Specifier:	Golberg	Project:	Cable Railing
Address:	610 SW Alder \#918	Sub-Project I Pos. No.:	Line Post Base
Phone I Fax:	$503-226-1286 \mid$	Date:	$12 / 14 / 2017$

E-Mail:

8 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you.

Company:

Specifier:
Address:
Phone I Fax
E-Mail:

Page:
1
Project:
Sub-Project I Pos. No.:
Date:
12/14/2017

Specifier's comments:

1 Input data

Anchor type and diameter:
Effective embedment depth:
Material:
Evaluation Service Report:
Issued I Valid:
Proof:
Stand-off installation:
Anchor plate:
Profile:
Base material:
Installation:
Reinforcement:

Seismic loads (cat. C, D, E, or F)

HIT-HY 200 + HIT-Z-R 3/8
$\mathrm{h}_{\text {ef,opti }}=3.583$ in. ($\mathrm{h}_{\text {ef, limitit }}=3.750 \mathrm{in}$.)
A4
ESR-3187
SAFE:ET
11/1/2016 | 3/1/2018
Design method ACl 318-08 / Chem
$e_{b}=0.000 \mathrm{in}$. (no stand-off); $t=0.500 \mathrm{in}$.
$I_{x} \times I_{y} \times t=6.000$ in. $\times 5.000$ in. $\times 0.500$ in.; (Recommended plate thickness: not calculated no profile
cracked concrete, $2500, \mathrm{f}_{\mathrm{c}}{ }^{\prime}=2500 \mathrm{psi} ; \mathrm{h}=6.000 \mathrm{in}$., Temp. short/long: $32 / 32^{\circ} \mathrm{F}$
hammer drilled hole, Installation condition: Dry
tension: condition B, shear: condition B; no supplemental splitting reinforcement present edge reinforcement: none or < No. 4 bar
no

Geometry [in.] \& Loading [lb, in.Ib]

Company:

Specifier:
Address:
Phone I Fax: |
E-Mail:

Project:
Sub-Project I Pos. No.:
Date: 12/14/2017

2 Load case/Resulting anchor forces

Load case: Design loads
Anchor reactions [lb]
Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	1459	274	262	80
2	1459	274	262	80
3	0	274	262	80
4	0	274	262	80

max. concrete compressive strain: 0.21 [\%]
max. concrete compressive stress: 920 [psi]
resulting tension force in (x / y) $=(0.000 /-1.800)$: $2918[\mathrm{lb}]$ resulting compression force in $(\mathrm{x} / \mathrm{y})=(0.000 / 2.148)$: 2918 [lb]

3 Tension load

	Load N_{ua} [lb]	Capacity ϕ N $\mathrm{N}_{\text {[}}$ [lb]	Utilization $\beta_{\mathrm{N}}=\mathrm{N}_{\mathrm{ua}} / \boldsymbol{\phi} \mathrm{N}_{\mathrm{n}}$	Status
Steel Strength*	1459	4749	31	OK
Pullout Strength*	1459	5169	29	OK
Sustained Tension Load Bond Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Strength**	2918	3305	89	OK

* anchor having the highest loading **anchor group (anchors in tension)
3.1 Steel Strength
$\mathrm{N}_{\mathrm{sa}}=\mathrm{ESR}$ value refer to ICC-ES ESR-3187
$\phi \mathrm{N}_{\mathrm{sa}} \geq \mathrm{N}_{\mathrm{ua}} \quad$ ACl 318-08 Eq. (D-1)
Variables

$\mathrm{A}_{\text {se,N }}\left[\mathrm{in} .{ }^{2}\right]$	$\mathrm{f}_{\mathrm{uta}}[\mathrm{psi}]$
0.08	94200

Calculations

$\mathrm{N}_{\mathrm{sa}}[\mathrm{lb}]$
7306

Results

$\mathrm{N}_{\text {sa }}[\mathrm{lb}]$	$\phi_{\text {steel }}$	$\phi \mathrm{N}_{\text {sa }}[\mathrm{lb}]$	$\mathrm{N}_{\mathrm{ua}}[\mathrm{lb}]$
7306	0.650	4749	1459

3.2 Pullout Strength

$\mathrm{N}_{\mathrm{pn}}=\mathrm{N}_{\mathrm{p}} \quad$ refer to ICC-ES ESR-3187
$\phi \mathrm{N}_{\mathrm{pn}} \geq \mathrm{N}_{\text {ua }} \quad$ ACl 318-08 Eq. (D-1)
Variables
$\frac{\mathrm{N}_{\mathrm{p}}[\mathrm{lb}]}{7952}$

Calculations

\qquad
Results

$\mathrm{N}_{\mathrm{pn}}[\mathrm{lb}]$	$\phi_{\text {concrete }}$	$\phi \mathrm{N}_{\mathrm{pn}}[\mathrm{lb}]$	$\mathrm{N}_{\mathrm{ua}}[\mathrm{lb}]$
7952	0.650	5169	1459

www.hilti.us
Profis Anchor 2.7.5

Company:

Specifier:
Address:
Phone I Fax:
E-Mail:
Page:
3
Project:
Sub-Project I Pos. No.:
Date:
12/14/2017
3.3 Concrete Breakout Strength
$N_{c b g}=\left(\frac{A_{N c}}{A_{N c 0}}\right) \psi_{e c, N} \psi_{e d, N} \psi_{c, N} \psi_{c p, N} N_{b}$
$\phi \mathrm{N}_{\mathrm{cbg}} \geq \mathrm{N}_{\mathrm{ua}}$
$A_{N c} \quad$ see $\mathrm{ACl} 318-08$, Part D.5.2.1, Fig. RD.5.2.1(b)
$A_{\text {Nco }}=9 h_{\text {ef }}^{2}$
$\psi_{\mathrm{ec}, \mathrm{N}}=\left(\frac{1}{1+\frac{2 \mathrm{e}_{\mathrm{N}}^{\prime}}{3 \mathrm{~h}_{\mathrm{ef}}}}\right) \leq 1.0$
$\psi_{\text {ed,N }}=0.7+0.3\left(\frac{\mathrm{C}_{\mathrm{a}, \text { min }}}{1.5 \mathrm{~h}_{\mathrm{ef}}}\right) \leq 1.0$
$\psi_{\mathrm{cp}, \mathrm{N}}=\operatorname{MAX}\left(\frac{\mathrm{c}_{\mathrm{a}, \text { min }}}{\mathrm{C}_{\mathrm{ac}}}, \frac{1.5 \mathrm{~h}_{\mathrm{ef}}}{\mathrm{c}_{\mathrm{ac}}}\right) \leq 1.0$
$N_{b} \quad=k_{c} \lambda \sqrt{f_{c}^{\prime}} h_{e f}^{1.5}$

ACl $318-08$ Eq. (D-5)
ACl 318-08 Eq. (D-1)
ACI 318-08 Eq. (D-6)

ACI 318-08 Eq. (D-9)

ACl 318-08 Eq. (D-11)
ACl 318-08 Eq. (D-13)
ACI 318-08 Eq. (D-7)

Variables

h_{ef} [in.]	$\mathrm{e}_{\mathrm{c} 1, \mathrm{~N}}$ [in.]	$\mathrm{e}_{\mathrm{c} 2, \mathrm{~N}}$ [in.]	$\mathrm{c}_{\mathrm{a}, \text { min }}$ [in.]	$\psi_{\mathrm{c}, \mathrm{N}}$
3.583	0.000	0.000	2.500	1.000

$\mathrm{c}_{\mathrm{ac}}[\mathrm{in}]$.	k_{c}	λ	$\mathrm{f}_{\mathrm{c}}[\mathrm{psi}]$
10.048	17	1	2500

Calculations

$\mathrm{A}_{\text {Nc }}\left[\right.$ in. $\left.{ }^{2}\right]$	$\mathrm{A}_{\text {Nco }}\left[\right.$ in. $\left.{ }^{2}\right]$	$\psi_{\text {ect } 1, \mathrm{~N}}$	$\psi_{\text {ec2,N }}$	$\psi_{\text {ed, } \mathrm{N}}$	$\psi_{\text {ep,N }}$	$\mathrm{N}_{\mathrm{b}}[\mathrm{lb}]$
120.79	113.81	1.000	1.000	0.841	1.000	5700

Results

$\mathrm{N}_{\text {cbg }}[\mathrm{lb}]$	$\phi_{\text {concrete }}$	$\phi \mathrm{N}_{\text {cbg }}[\mathrm{lb}]$	$\mathrm{N}_{\mathrm{ua}}[\mathrm{lb}]$
5085	0.650	3305	2918

Company:

Specifier:
Address:
Phone I Fax
E-Mail:

Page:
Project:
Sub-Project I Pos. No.:
Date:
12/14/2017

4 Shear load

	Load V_{ua} [lb]	Capacity ϕ V $\mathrm{V}_{\text {[}}$ [lb]	Utilization $\beta_{\mathrm{V}}=\mathrm{V}_{\mathrm{ua}} / \phi \mathrm{V}_{\mathrm{n}}$	Status
Steel Strength*	274	2630	11	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength (Concrete Breakout Strength controls)**	1098	10391	11	OK
Concrete edge failure in direction y -**	1050	2936	36	OK
**anchor group (relevant anchors)				

4.1 Steel Strength

$\mathrm{V}_{\mathrm{sa}}=\left(0.6 \mathrm{~A}_{\text {se }, \mathrm{V}} \mathrm{f}_{\mathrm{uta}}\right) \quad$ refer to ICC-ES ESR-3187
$\phi \mathrm{V}_{\text {stel }} \geq \mathrm{V}_{\text {ua }} \quad$ ACl 318-08 Eq. (D-2)

Variables

$\mathrm{A}_{\text {se, }, ~}\left[\right.$ in. $\left.{ }^{2}\right]$	$\mathrm{f}_{\text {uta }}[\mathrm{psi}]$	$\left(0.6 \mathrm{~A}_{\text {se,V }} \mathrm{f}_{\mathrm{uta}}\right)[\mathrm{bb}]$
0.08	94200	4384

Calculations

$\mathrm{V}_{\mathrm{sa}}[\mathrm{lb}]$

$$
4384
$$

Results

$\mathrm{V}_{\text {sa }}[\mathrm{lb}]$	$\phi_{\text {steel }}$	$\phi \mathrm{V}_{\text {sa }}[\mathrm{lb}]$	$\mathrm{V}_{\text {ua }}[\mathrm{lb}]$
4384	0.600	2630	274

4.2 Pryout Strength (Concrete Breakout Strength controls)

$\mathrm{V}_{\mathrm{cpg}}=\mathrm{k}_{\mathrm{cp}}\left[\left(\frac{\mathrm{A}_{\mathrm{Nc}}}{\mathrm{A}_{\mathrm{Nc} 0}}\right) \psi_{\text {ec,N}} \psi_{\text {ed }, \mathrm{N}} \psi_{\mathrm{c}, \mathrm{N}} \psi_{\mathrm{cp}, \mathrm{N}} \mathrm{N}_{\mathrm{b}}\right]$
$\phi \mathrm{V}_{\mathrm{cpg}} \geq \mathrm{V}_{\mathrm{ua}}$

$A_{\text {Nco }}=9 h_{\text {ef }}^{2}$
$\psi_{\mathrm{ec}, \mathrm{N}}=\left(\frac{1}{1+\frac{2 \mathrm{e}_{\mathrm{N}}^{\prime}}{3 \mathrm{~h}_{\mathrm{ef}}}}\right) \leq 1.0$
$\psi_{\text {ed,N }}=0.7+0.3\left(\frac{\mathrm{C}_{\mathrm{a}, \text { min }}}{1.5 \mathrm{~h}_{\mathrm{ef}}}\right) \leq 1.0 \quad$ ACI 318-08 Eq. (D-11)
$\psi_{\mathrm{cp}, \mathrm{N}}=\operatorname{MAX}\left(\frac{\mathrm{C}_{\mathrm{a}, \mathrm{min}}}{\mathrm{C}_{\mathrm{ac}}}, \frac{1.5 \mathrm{~h}_{\mathrm{ff}}}{\mathrm{C}_{\mathrm{ac}}}\right) \leq 1.0 \quad$ ACl 318-08 Eq. (D-13)
$N_{b}=k_{c} \lambda \sqrt{f_{c}^{\prime}} h_{e f}^{1.5} \quad$ ACl 318-08 Eq. (D-7)

ACl 318-08 Eq. (D-31)
ACI 318-08 Eq. (D-2)
ACI 318-08 Eq. (D-6)
ACI 318-08 Eq. (D-9)

Variables

k_{cp}	$\mathrm{h}_{\mathrm{ef}}[\mathrm{in}$. .]	$\mathrm{e}_{\mathrm{c} 1, \mathrm{~N}}$ [in.]	$\mathrm{e}_{\mathrm{c} 2, \mathrm{~N}}$ [in.]	$\mathrm{c}_{\mathrm{a}, \min }$ [in.]
2	3.583	0.000	0.000	2.500
$\psi_{\mathrm{c}, \mathrm{N}}$	$\mathrm{c}_{\mathrm{ac}}[\mathrm{in}]$.	k_{c}	λ	$\mathrm{f}_{\mathrm{c}}^{\prime}[\mathrm{psi}]$
1.000	10.048	17	1	2500

Calculations

$\mathrm{A}_{\text {Nc }}\left[\mathrm{in}.{ }^{2}\right]$	$\mathrm{A}_{\text {Nco }}\left[\mathrm{in}.{ }^{2}{ }^{2}\right]$	$\psi_{\text {ecc } 1, \mathrm{~N}}$	$\psi_{\text {ecz2,N}}$	$\psi_{\text {ed,N }}$	$\psi_{\text {ep,N }}$	$\mathrm{N}_{\mathrm{b}}[\mathrm{bb}]$
176.30	113.81	1.000	1.000	0.841	1.000	5700

Results

$\mathrm{V}_{\text {cpg }}[\mathrm{lb}]$	ϕ concrete	$\phi \mathrm{V}_{\text {cpg }}[\mathrm{lb}]$	$\mathrm{V}_{\text {ua }}[\mathrm{lb}]$
14844	0.700	10391	1098

www.hilti.us
Profis Anchor 2.7.5

Company:		Page:	5
Specifier:	Project:		
Address:	Sub-Project I Pos. No.:		
Phone I Fax:		Date:	$12 / 14 / 2017$

Phone IFax:
Date:
12/14/2017
E-Mail:
4.3 Concrete edge failure in direction y -

$\mathrm{V}_{\mathrm{cbg}}=\left(\frac{\mathrm{A}_{\mathrm{Vc}}}{\mathrm{A}_{\mathrm{Vc} 0}}\right) \psi_{e \mathrm{e}, \mathrm{V}} \psi_{e d, V} \psi_{\mathrm{c}, \mathrm{V}} \psi_{\mathrm{h}, \mathrm{V}} \psi_{\text {parallel, }} \mathrm{V}_{\mathrm{b}}$	ACI 318-08 Eq. (D-22)
$\phi \mathrm{V}_{\text {cbg }} \geq \mathrm{V}_{\text {ua }}$	ACl 318-08 Eq. (D-2)
$A_{V_{c}}$ see ACI 318-08, Part D.6.2.1, Fig. RD.6.2.1(b)	
$\mathrm{A}_{\mathrm{vc} 0}=4.5 \mathrm{c}_{\mathrm{a} 1}^{2}$	ACl 318-08 Eq. (D-23)
$\psi_{e c, V}=\left(\frac{1}{1+\frac{2 e_{v}^{\prime}}{3 \mathrm{c}_{\mathrm{a} 1}}}\right) \leq 1.0$	ACI 318-08 Eq. (D-26)
$\psi_{\mathrm{ed}, \mathrm{~V}}=0.7+0.3\left(\frac{\mathrm{c}_{\mathrm{a} 2}}{1.5 \mathrm{c}_{\mathrm{a} 1}}\right) \leq 1.0$	ACl 318-08 Eq. (D-28)
$\psi_{\mathrm{h}, \mathrm{~V}}=\sqrt{\frac{1.5 \mathrm{c}_{\mathrm{al}}}{\mathrm{~h}_{\mathrm{a}}}} \geq 1.0$	ACI 318-08 Eq. (D-29)
$\mathrm{V}_{\mathrm{b}}=\left(7\left(\frac{l_{\mathrm{e}}}{\mathrm{d}_{\mathrm{a}}}\right)^{0.2} \sqrt{\mathrm{~d}_{\mathrm{a}}}\right) \lambda \sqrt{\mathrm{f}_{\mathrm{c}}} \mathrm{c}_{\mathrm{a} 1}^{1.5}$	ACI 318-08 Eq. (D-24)

Variables

$\mathrm{c}_{\mathrm{a} 1}$ [in.]	$\mathrm{c}_{\mathrm{a} 2}$ [in.]	e_{cv} [in.]	$\psi_{\mathrm{c}, \mathrm{V}}$	h_{a} [in.]
2.500	-	0.000	1.000	6.000
I_{e} [in.]	λ	d_{a} [in.]	$\mathrm{f}_{\mathrm{c}}^{\prime}[\mathrm{psi}]$	$\psi_{\text {parallel, }, \mathrm{V}}$
3.000	1.000	0.375	2500	2.000

Calculations

$\mathrm{A}_{\mathrm{Vc}}\left[\mathrm{in} .{ }^{2}\right]$	$\mathrm{A}_{\mathrm{Vc} 0}\left[\mathrm{in}{ }^{2}{ }^{2}\right]$	$\psi_{\text {ec, }, \mathrm{V}}$	$\psi_{\text {ed }, \mathrm{V}}$	$\psi_{\mathrm{h}, \mathrm{V}}$	$\mathrm{V}_{\mathrm{b}}[\mathrm{lb}]$
45.94	28.13				1.00
Results					1284
$\mathrm{~V}_{\mathrm{cbg}}[\mathrm{lb}]$	$\phi_{\text {concrete }}$	$\phi \mathrm{V}_{\text {cbg }}[\mathrm{lb}]$	$\mathrm{V}_{\mathrm{ua}}[\mathrm{lb}]$		
4195	0.700	2936	1050		

5 Combined tension and shear loads

β_{N}	β_{V}	ζ	Utilization $\beta_{\mathrm{N}, \mathrm{V}}[\%]$	Status
0.883	0.358	$5 / 3$	100	OK

$\beta_{N V}=\beta_{N}^{\zeta}+\beta_{V}^{\zeta}<=1$

6 Warnings

- The anchor design methods in PROFIS Anchor require rigid anchor plates per current regulations (ETAG 001/Annex C, EOTA TR029, etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered - the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Anchor calculates the minimum required anchor plate thickness with FEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid base plate assumption is valid is not carried out by PROFIS Anchor. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies when supplementary reinforcement is used. The Φ factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to your local standard.
- Design Strengths of adhesive anchor systems are influenced by the cleaning method. Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions
- The ACI 318-08 version of the software does not account for adhesive anchor special design provisions corresponding to overhead applications.
- Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard!

Fastening meets the design criteria!

Company:

Specifier:
Address:
Phone I Fax
E-Mail:

Page:
Project:
Sub-Project I Pos. No.:
Date:
12/14/2017

7 Installation data

Anchor plate, steel: -
Profile: no profile
Hole diameter in the fixture: $\mathrm{d}_{\mathrm{f}}=0.438$ in.
Plate thickness (input): 0.500 in.
Recommended plate thickness: not calculated
Drilling method: Hammer drilled
Cleaning: No cleaning of the drilled hole is required

Anchor type and diameter: HIT-HY 200 + HIT-Z-R 3/8
Installation torque: 177.015 in .lb
Hole diameter in the base material: 0.438 in.
Hole depth in the base material: 4.583 in.
Minimum thickness of the base material: 5.833 in.

7.1 Recommended accessories

Drilling

- Suitable Rotary Hammer
- Properly sized drill bit

Cleaning

- No accessory required

Setting

- Dispenser including cassette and mixer
- Torque wrench

Coordinates Anchor in.

Anchor	\mathbf{x}	\mathbf{y}	$\mathbf{c}_{-\mathbf{x}}$	$\mathbf{c}_{+\mathbf{x}}$	$\mathbf{c}_{-\mathbf{y}}$	$\mathbf{c}_{+\mathbf{y}}$
1	-2.375	-1.800	-	-	2.500	-
2	2.375	-1.800	-	-	2.500	-
3	-2.375	1.800	-	-	6.100	-
4	2.375	1.800	-	-	6.100	-

www.hilti.us
Profis Anchor 2.7.5
Company:
Page:
7
Specifier:
Address:
Phone I Fax: |
Sub-Project I Pos. No.:
E-Mail:
Sub-Project I Pos. No.: $12 / 14 / 2017$
Date:

8 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you.

PHYSICAL PROPERTIES

产	Ixx	$0.22225 \mathrm{in}^{\wedge} 4$	rxx	0.58354 in	Sxx	0.20341 in^3
	lyy	$0.40273 \mathrm{in}^{\wedge} 4$	ryy	0.78552 in	Syy	$0.35765 \mathrm{in}^{\wedge} 3$
	ALLOY 6063-T5		ALLOWABLE STRESS $=9500$ PSI		MINIMUM YIELD $=16000 \mathrm{PSI}$	

PHYSICAL PROPERTIES

PI

	1 xx	$0.23745 \mathrm{in}^{\wedge} 4$	rxx	0.62194 in	Sxx	$0.22693 \mathrm{in}^{\wedge} 3$
	lyy	$0.34741 \mathrm{in}^{\wedge} 4$	ryy	0.75229 in	Syy	$0.34740 \mathrm{in}^{\wedge} 3$
	ALLOY 6063-T5		ALLOWABLE STRESS $=9500 \mathrm{PSI}$		MINIMUM YIELD $=16000 \mathrm{PSI}$	

	mme 1500 S TOP RA	Physical Properties		¢
13272 COMBER WAY railcraft surrey, b.c. CANADAVJW SVG nternational nc.	Engineering Standard			
	DIE\# AC6471		DRAWMNE MAME 1500 S TOP RAlt-inch PHYSICAL PROP PCRTR隹5	
				1
	Draftreasom JGUIANG	0		

PHYSICAL PROPERTIES

PHYSICAL PROPERTIES P3						
	Ixx	$0.22530 \mathrm{in}^{\wedge} 4$	rxx	0.54401 in	Sxx	$0.29968 \mathrm{in}^{\wedge} 3$
	lyy	$0.76681 \mathrm{in}^{\wedge} 4$	ryy	0.99694 in	Syy	$0.54228 \mathrm{in}^{\wedge} 3$
	ALLOY 6063-T5		ALLOWABLE STRESS $=9500$ PSI		MINIMUM YIELD $=16000$ PSI	

Bus.(604)543.7245
Fax.(604) 543-4447
Toll Free: 1-800-211-4884

 Web site: www.railcratt.comEmail: railinfo@railcraft.com
13272 COMBER WAY
SURREY.B.C.

Physical Properties

Engineering Standard			
DIE \# VH62741			
SCALE $1^{\prime \prime}=1^{\prime \prime}$	DATE 25 NOV. 2009		
DRAFTPERSON BCALARA	O		

DIE \# VH62741
draftperson BCALARA

PHYSICAL PROPERTIES

PHYSICAL PROPERTIES P4						
	Ixx	$0.35527 \mathrm{in}^{\wedge} 4$	rxx	0.57899 in	Sxx	$0.43726 \mathrm{in}^{\wedge} 3$
	lyy	$0.35192 \mathrm{in}^{\wedge} 4$	ryy	0.57625 in	Syy	$0.43314 \mathrm{in}^{\wedge} 3$
	ALLOY 6005A-T6		ALLOWABLE STRESS $=21000 \mathrm{PSI}$		MINIMUM YIELD $=35000 \mathrm{PSI}$	

NOTE:
SCREW CHASE REMOVED FROM ORIGINAL
(STEVE WEI)

Top plate is $15 / 8^{\prime \prime} \times 4^{\prime \prime} \times 1 / 8^{\prime \prime}$
This sits on top of the post

The first hole is $31 / 8^{\prime \prime}$ down from the top of the post
$34^{\prime \prime}$
Post $/$ Height

Base plate is $4^{\prime \prime} \times 4^{\prime \prime} \times 3 / 8^{\prime \prime}$
9 more holes @ $31 / 8$ " on center 1/4" diameter

Post Material
15/8" square
<\#>

Top plate is $11 / 2^{\prime \prime} \times 51 / 2^{\prime \prime} \times 1 / 8^{\prime \prime}$
This sits on top of the post

Post Material
1 1/2" x $3^{\prime \prime}$
<\#>

-RI/ FrOCLRP	Surface Mounted Details - Cable Railing		
		MF	

-R/: PRO (RP	Surface Mounted Details - Cable Railing		
		MF	

DECK

