August 6, 2021

Jeremy Krushner RailPro 2700 NE Andresen Rd Ste 628 Vancouver, WA 98661

Analysis of Cable Guardrail Systems One and Two Family Use RailPro Profiles

Dear Mr. Krushner:

James G. Pierson, Inc. is pleased to submit this report which summarizes the results of the analysis of RailPro Cable Residential Guardrails.

Separate reports for the analysis and testing of the Railpro guardrail systems for the baluster and glass guardrail systems have been completed and are not part of the attached analysis.

CONCLUSIONS

1. The analysis demonstrates that the Railpro Cable System profiles used for residential guardrail systems meet the requirements of the 2015 International Residential Code.

2. The analysis utilizes allowable stress design (working stress design). The analysis provides a demonstration that the cable guardrail system meets the applicable code requirements.

3. Verification that the deck or balcony framing supporting the guardrail system meets the minimum sizes specified is beyond the scope of this report (by others).

PRODUCT DESCRIPTION

The Railpro Cable Residential Railing System consists of extruded aluminum alloy 6005A-T6 and T5 framing members (1 5/8" x 1 5/8" posts, 1 5/8" x 1 5/8" superposts, and 1"x3" termination posts) with aluminum top rails extruded from aluminum alloy 6063-T5 material. Cable in-fill are 1/8" diameter multi-strand 1x19 stainless steel cables spaced at 3 1/8" o/c and pre-stressed to 175 lbs tension. Aluminum members are connected together with cadmium-coated Torx Drive flat head steel screws and coated with a pigmented enamel finish for durability and aesthetics or Type 304 SH stainless steel flat head screws (#12).

The railing systems are typically sold for use as exterior guardrails on balconies, decks, porches, stairs and similar installations in residential use where railings are required or desired.

These systems are designed to be partially field-fabricated using stock components. The frames are designed to attach the systems to structures composed of wood and other components. The screw and lag connectors used to connect to the supporting structures should be either hot dipped galvanized steel or stainless steel.

The top railing for these systems is offered in a few different cross-sectional configurations (Series 1500S, 1500R, and 3000R). Railing sections are fabricated for the required spacing between vertical posts. The posts are attached to mounting brackets which are attached to the deck or balcony framing.

STANDARDS

Railpro products are based in Vancouver, WA and marketed in the western United States. Therefore, it was determined that standard used for analysis should be the minimum loads specified in the 2015 International Residential Code (IRC) which are the basis for state building codes in the Western United States.

It was determined that the loading provisions of Section R301.5 of the IRC applies to the Railpro cable residential railing systems. Railing Systems are required to withstand a specified loading of 200 pounds applied in any direction to the top rail of guardrails. The top rail load is not required to be concurrent with any other loads.

Components of a rail system (pickets, glass panels, cables, bottom rails) are required designed to resist a 50 lb force in any direction over a one foot square.

The terminology of the IRC "be designed to resist" was interpreted to mean that the railing system being analyzed would resist the forces applied without any material yielding (breaking or permanent bending). Because railing system members are not considered to be structural components of a building, the material deflection limit requirements do not apply; however, it is obvious that a railing system must resist minimum loads without plastic a deformation that would compromise safety. As a result, the analysis utilizes allowable stress design (working stress design). The analysis

Consulting Structural Engineers

provides a suitably conservative demonstration that the residential guardrail system meets the applicable code requirements.

ANALYSIS RESULTS

The analysis is elaborated as follows:

- · Calculations
- . Section Properties
- · Typical Connections

Pages 1 - 30 Pages P1 – P6 Pages C-1-

We are pleased to submit this report. Please call us if questions arise.

Peder Golberg, P.E., S.E. Principal

Rail Pro Residential Cable Rail System

Check for conformance to:

International Residence Code Section R312 & Table R301.5

Loads: 200 lbs applied in any direction along top rail 50 lbs on an area of 1 ft² applied horizontally (non-concurrently with top rail load)

Framework is extruded Aluminum 6063-T5 (rails), 6005A-T6 (typ posts), or 6005-T5 (termination posts)

Cable in-fill is 1/8" diameter multi-strand 1x19 strainless steel cables spaced at 3 1/8" o/c and pre-stressed to 175 lbs max (see chart)

Fasteners are #12 18-8 stainless steel screws

Top rail is fastened to a flange on the top of the posts with (4) #12 18-8 screws. The vertical posts are attached to the baseplates with welds around all sides fully developing the material.

Working Stress Design Utilized

Aluminum Properties: Extruded 6005-T6

;Ft_u = 38 ksi ;Ft_y = 35 ksi ;F'_{cy} = 35 ksi ;F_{shear} = 20 ksi ;E = 10100 ksi

;F_{b1} = F'_{cy} / 1.65 = 21212.121 psi ;(ASD) or ;F_{b2} = Ft_u / (1 * 1.95) = 19487.179 psi ;(ASD)

; F_{b1} = 21212.121 psi ; F_{b2} = 19487.179 psi

; $F_{b6005T6} = min(F_{b1}, F_{b2})$

;F b6005T6 = **19487.179** psi

James G. Pierson, Inc.	Project	Cable Railing Systems	Job no.
Consulting Structural Engineers 610 S.W. Alder, Suite 918 Portland, Oregon 97205 Tel: (503) 226-1286 Fax: (503) 226-3130	Location	Residential	Date 12/14/2017
	Client	Railpro	Sheet no. Page 1 of 30

Aluminum Properties: Extruded 6063-T5 ;Ftu6063 = 22 ksi ;Fty6063 = 16 ksi ;F'cy6063 = 16 ksi ;Fshear6063 = 13 ksi ;E6063 = 10100 ksi ;Fb16063 = F'cy6063 / 1.65 = 9696.970 psi ;(ASD) or ;Fb26063 = Ftu6063 / (1 * 1.95) = 11282.051 psi ;(ASD) ; Fb16063 = 9696.970 psi ; Fb26063 = 11282.051 psi ;Fb6063 = min(Fb16063,Fb26063) ;Fb6063 = 9696.970 psi

Aluminum Properties: Extruded 6005-T5

 $\begin{array}{l} \label{eq:ftuesdef} ; Ft_{46005T5} &= 38 \ ksi \\ ; Ft_{96005T5} &= 35 \ ksi \\ ; F'_{cy6005T5} &= 35 \ ksi \\ ; F_{shear6005T5} &= 24 \ ksi \\ ; E_{60005T5} &= 10100 \ ksi \end{array}$

; $F_{b16005T5} = F'_{cy6005T5} / 1.65 = 21212.121 \text{ psi}$;(ASD) or ; $F_{b26005T5} = Ft_{u6005T5} / (1 * 1.95) = 19487.179 \text{ psi}$;(ASD)

; Fb16005T5 = 21212.121 psi ; Fb26005T5 = 19487.179 psi

;Fb6005T5 = min(Fb16005T5,Fb26005T5)

;Fb6005T5 = **19487.179** psi

James G. Pierson, Inc.	Project Cable Railing Systems	Job no.
Consulting Structural Engineers 610 S.W. Alder, Suite 918 Portland, Oregon 97205 Tel: (503) 226-1286 Fax: (503) 226-3130	Location Residential	Date 12/14/2017
	^{Client} Railpro	Sheet no. Page 2 of 30

Guard Rail Cable Calculations

TASK:

Determine tension required so guard rail cables met deflection requirements

CABLE PROPERTIES:

Cable Material:	316 Stainless Steel
Cable Construction Type:	1 x 19
Young's Modulus:	;E = 15000000 psi
Cable Diameter:	;d = 0.125 in
Cross-Sectional Area:	;A = $(\pi \times d^2) / 4 = 0.012 \text{ in}^2$
Cable Spacing:	;S = 3.125 in
Full Cable Length:	;L = 50 ft = 600.000 in
Unsupported Cable Span:	;l = 48.00 in

FORCES ON CABLE:

IBC 2015 1015.4:

"Required guards shall not have openings that allow passage of a sphere of 4 inches in diameter from the walking surface to the required guard height." No requirement or note in code about the force to be placed on the 4" sphere.

ASCE 7-10 4.5.1:

"Intermediate rails (all those excep the handrail or top rail) and panel fillers shall be designed to withstand a horiztonally applied normal load of 50 lb on an aea not to exceed 12in by 12in". Use this 50 psf force projected on the area of the 4" sphere since code isn't clear on the required force to maintain the 4" clear dimension.

Required Force:	;F _{Req} = 50.00 psf
Sphere Diameter:	;D = 4.00 in
Sphere Cirumference:	;C = $(\pi \times D^2) / 4 = 0.087 \text{ ft}^2$
Projected Load over Circumference:	; $F_{Proj} = F_{Req} \times C = 4.363 \text{ lb}$
Safety Factor (chosen to use)	;FS = <mark>2</mark> ;
Max Applied Force:	; $F_{Max} = F_{Proj} \times FS = 8.727$ lb

James G. Pierson, Inc.	Project Cable Railing Systems	Job no.
Consulting Structural Engineers	Location Residential	Date 12/14/2017
Tel: (503) 226-1286 Fax: (503) 226-3130	^{Client} Railpro	Sheet no. Page 3 of 30

ANGLED FORCES AND CABLE DEFLECTION:

When the 4" sphere is pushed through the cables, the cables are forced to move both vertically and horizontally, with the vertical displacement governing. The angle of the resultant force is approximately 45 degrees, which will be utilized in the angled force and deflection calculations.

Angled Force on Cable: Allowable Vertical Deflection: (governs) Allowable Cable Deflection: cable $;F_A = \sqrt{((F_{Max})^2 + (F_{Max})^2)} = 12.341 \text{ lb}$ $;a_{Ver} = (D - S) / 2 = 0.437 \text{ in};$

 $a_{AII} = \sqrt{(a_{Ver}^2 + a_{Ver}^2)} = 0.619$ in ;per

Deflection equation derivation:

$$\begin{split} T &= (F_A \times I) / (4 \times a); \\ \delta &= 2 \times a^2 / I; \\ \delta &= (T \times L) / (E \times A) = (F_A \times I) / (4 \times a) \times L / (E \times A); \\ 2 \times a^2 / I &= (F_A \times I) / (4 \times a) \times L / (E \times A); \\ 8 \times a^3 / I &= (F_A \times I \times L) / (E \times A); \\ 8 \times a^3 &= (F_A \times I^2 \times L) / (E \times A); \end{split}$$

James G. Pierson, Inc.	Project Cable Railing Systems	Job no.
Consulting Structural Engineers 610 S.W. Alder, Suite 918 Portland, Oregon 97205 Tel: (503) 226-1286 Fax: (503) 226-3130	Location Residential	Date 12/14/2017
	Client Railpro	Sheet no. Page 4 of 30

$$a^{3} = (F_{A} \times I^{2} \times L) / (8 \times E \times A);$$

 $a = ((F_{A} \times I^{2} \times L) / (8 \times E \times A))^{1/3};$

Deflection due to sphere load: ; $a_s = ((F_A \times I^2 \times L) / (8 \times E \times A))^{1/3} = 2.263$ in

CABLE TENSION FORCE:

Deflection due to load is higher than the allowable, so cable is to be pretensioned to be compliant.

Tension in cable due to sphere load:	;T _S = (F _A \times I) / (4 \times a _S) = 65.450 lb
Tension in cable at max deflection:	;T _a = T _S × (a _S / a _{All}) = 239.359 lb
Required pretension:	;T _{p1} = T _a – T _S = 173.910 lb

• Cables are recommended by supplier to be tensioned at 300 lbs max / cable which is greater than the required pretension. Thus, cable is compliant with both codes IBC 2015 and IRC 2015.

CABLE TENSION FORCE FOR SHORTER SPANS:

Unsupported Cable Span:	;l = 54.00 in
Deflection due to sphere load:	;a _s = $((F_A \times I^2 \times L) / (8 \times E \times A))^{1/3}$ =
2.448 in	
Tension in cable due to sphere load:	;Ts = (F _A × I) / (4 × a _s) = 68.071 lb
Tension in cable at max deflection:	;T _a = T _S × (a _S / a _{All}) = 269.279 lb
Required pretension:	;T _{p3} = T _a – T _S = 201.209 lb
Unsupported Cable Span:	;l = 42.00 in
Deflection due to sphere load:	;a _s = $((F_A \times I^2 \times L) / (8 \times E \times A))^{1/3}$ =
2.070 in	
Tension in cable due to sphere load:	;Ts = (F _A × I) / (4 × a _s) = 62.601 lb
Tension in cable at max deflection:	;T _a = T _S × (a _S / a _{All}) = 209.440 lb
Required pretension:	;T _{p4} = T _a – Ts = 146.839 lb
Unsupported Cable Span:	;l = 36.00 in
Deflection due to sphere load:	; $a_s = ((F_A \times I^2 \times L) / (8 \times E \times A))^{1/3} =$
1.868 in	
Tension in cable due to sphere load:	;T _s = (F _A × I) / (4 × a_s) = 59.465 lb
Tension in cable at max deflection:	;T _a = T _S × (a _S / a _{All}) = 179.520 lb
Required pretension:	;T _{p5} = T _a – T _S = 120.054 lb

James G. Pierson, Inc.	Cable Railing Systems	Job no.
Consulting Structural Engineers 610 S.W. Alder, Suite 918 Portland, Oregon 97205 Tel: (503) 226-1286 Fax: (503) 226-3130	Residential	Date 12/14/2017
	Client Railpro	Sheet no. Page 5 of 30

Unsupported Cable Length:	Required Pretension:
;36 in ;	T _{p5} = 120.054 lb
;42 in ;	T _{p4} = 146.839 lb
;48 in ;	T _{p1} = 173.910 lb
;54 in ;	T _{p2} = 201.209 lb

Cable Forces on Posts:

Cable Tension is resisted by the termination posts and also corners or changes in direction.

Top rail acts as a compression member to resist cable tension forces. Bottom rail also acts as a compression member resisting cable tension when present. If there is no bottom rail, the base connection is required to resist the tension forces from cables. Top rail flat inserts (required for astestics) bear directly on face of post so tension forces are resisted by bearing and not just screws. For top rails when no infill is used, rail must be attached to posts with screws desgined to resist tension force.

Screw shear:

Per Aluminum Design Manual:

James G. Pierson, Inc.	Project Cable Railing Systems	Job no.
Consulting Structural Engineers 610 S.W. Alder, Suite 918 Portland, Oregon 97205 Tel: (503) 226-1286 Fax: (503) 226-3130	Location Residential	Date 12/14/2017
	^{Client} Railpro	Sheet no. Page 6 of 30

5.4.3 Screw Shear and Bearing

The shear force on a screw shall not exceed the least of:

$1) \ 2 F_{twl} D t_l / n_w.$	(Eq. 5.4.3-1)
2) $2F_{m2} Dt_2/n_u$	(Eq. 5.4.3-2)
3) $4.2(t_2^3D)^{1/2} F_{m^2}/n_r$, for $t_2 \le t_1$	(Eq. 5.4.3-3)
4) $P_{ns}/(1.25 n_s)$	(Eq. 5.4.3-4)

5.4.4 Minimum Spacing of Screws

The minimum distance between screw centers shall be 2.5 times the nominal screw diameter.

- 1) ;V_{allow10} = 2 * F_{tu1} * d_{screw} * t₁ / 3 = **552.267** lbs
- 2) ;V_{allow2} = 2 * F_{tu1} * d_{screw} * t₁ / 3 = **552.267** lbs
- 3) ;V_{allow3} = 4.2 * (t_{1^3} * d_{screw})^{.5} * F_{tu1} / 3 = **785.489** lbs
- 4) ;V_{allow4} = Pns / (1.25 * 3) = **557.600** lbs

;Vallow = Min(V allow10, Vallow2, Vallow3, Vallow4) = 552.267 lbs

;Resisting Force required at Top rail assuming no bottom rail (;225 lbs tension) = 1157 lbs for 36" guardrail post.

;Resisting Force required at Top rail assuming no bottom rail (225 lbs tension) = 1382 lbs for 42" guardrail post.

(See RISA model for results)

Load Check ; 1382 lbs / Vallow = 2.502 ;screws Use 4 screws at top rail to post connection.

James G. Pierson, Inc.	Cable Railing Systems	Job no.
Consulting Structural Engineers	Residential	Date 12/14/2017
Tel: (503) 226-1286 Fax: (503) 226-3130	Client Railpro	Sheet no. Page 7 of 30

Top Rails

Assume simply supported spans at ;L = 54 in ;maximum

Bending of Top Rail ;M = 200 lbs * L / 4 = 225.000 lb_ft ; or ; M = 2700.000 lb_in

1500 Series Top Rail (DIE AC6471 by Railcraft)

;Svert₁₅₀₀ = 0.22693 in³ ;Shorz₁₅₀₀ = 0.34740 in³

;fbvert = M / Svert1500 = 11897.942 psi

;Fb6063 = 9696.970 psi

No Good - Assume simply supported spans at ;L = 44 in ;maximum

Bending of Top Rail ;M = 200 lbs * L / 4 = 183.333 lb_ft ; or ; M = 2200.000 lb_in

;fb_{vert} = M / Svert₁₅₀₀ = 9694.619 psi

1500R Series Top Rail (DIE AC6470 by Railcraft)

Assume simply supported spans at ;L = 42 in ;maximum

Bending of Top Rail ;M = 200 lbs * L / 4 = 175.000 lb_ft ; or ; M = 2100.000 lb_in

;Svert_{1500r} = 0.20341 in³ ;Shorz_{1500r} = 0.35765 in³

;fbvert = M / Svert1500r = 10323.976 psi

;Fb6063 = 9696.970 psi

No Good - Assume simply supported spans at ;L = 39 in ;maximum

Bending of Top Rail ;M = 200 lbs * L / 4 = 162.500 lb_ft ; or ; M = 1950.000 lb_in

;fbvert = M / Svert1500r = 9586.549 psi

3000R Series Top Rail (DIE AC62741 by Railcraft)

Assume simply supported spans at ;L = 54 in ;maximum

James G. Pierson, Inc.	Cable Railing Systems	Job no.
Consulting Structural Engineers	Residential	Date 12/14/2017
Tel: (503) 226-1286 Fax: (503) 226-3130	Client Railpro	Sheet no. Page 8 of 30

Bending of Top Rail ;M = 200 lbs * L / 4 = 225.000 lb_ft ; or ; M = 2700.000 lb_in

;Svert_{3000r} = 0.29968 in³ ;Shorz_{3000r} = 0.54228 in³

;fb_{vert} = M / Svert_{3000r} = 9009.610 psi

;Fb6063 = 9696.970 psi

TOP RAIL COMPRESSION CHECK

Check allowable compression in top rails (tubular shapes per ADM 3.3.14)

```
\begin{aligned} \label{eq:second} &; F'_{cy6063} = 16.000 \; ksi \\ &; B_c = F'_{cy6063} * (1 + (F'_{cy6063} / 2250 \; ksi)^5) = 17.349 \; ksi \; ; (Table 3.3-4 \; ADM) \\ &; D_e = B_c \; / \; 10 \; ksi * (B_c \; / \; E_{6063})^{0.5} = 0.072 \\ &; n_y = 1.65 \\ &; S_1 = (B_c - F'_{cy6063} \; / \; (1.6 \; ^ {\rm D}_c \; ))^2 \; ; \; S_1 = 307234091348490. \\ &; C_c = 1 \; in \\ &; S_2 = (C_c \; / \; 1.6)^2 = 0.003 \\ &; L = 42 \; in \\ &; \; Shorz_{1500} = 0.347 \; in^3 \\ &; \; Ihorz_{1500} = 0.3474 \; in^4 \\ &L = 3.500 \; ft \; ; \\ &; L \; * \; Shorz_{1500} \; / \; (0.5 \; * \; Ihorz_{1500})^{.5} = 0.243 \\ &; F_c = \; Ft_{y6063} \; / \; n_y = 9.697 \; ksi \end{aligned}
```

; $f_c = 1382 \text{ lbs } / .484 \text{ in}^2 = 2.855 \text{ ksi}$; okay (1500S top rail or larger at the 42" height and 225 lbs tension in cables)

Use 1500 or 1500R top rails for short spans only (39" for 1500, 44" for 1500R) and use 3000 series top rails for spans upto 54 inches.

James G. Pierson, Inc.	Project Cable Railing Systems	Job no.
Consulting Structural Engineers 610 S.W. Alder, Suite 918 Portland, Oregon 97205 Tel: (503) 226-1286 Fax: (503) 226-3130	Location Residential	Date 12/14/2017
	^{Client} Railpro	Sheet no. Page 9 of 30

Posts

System uses both Superpost Residential Posts (By Railcraft) or Termination posts at ends (Die # VH-61957) for 36" height

 $;H_{36} = 36 \text{ in }; H_{42} = 42 \text{ in}$

Intermediate posts (not used for cable termination)

Residentail Post (Superpost)

 $S_{x1} = .43314 \text{ in}^3$

For 36" tall posts, 4.5 ft max spacing $;L_6 = 54$ in

Per IRC ;M1 = 200 lbs * H36 = 7200.000 lb_in

For 42" tall posts, 4.5 ft max spacing $;L_5 = 54$ in

Per IRC ;M₃ = 200 lbs * H₄₂ = 8400.000 lb_in

Residential – 36" height ; $F_{b1} = M_1/S_{x1} = 16622.801 \text{ psi}$;

Commercial – 42" height ; $F_{b3} = M_3/S_{x1} = 19393.268$ psi ;

Allowable; Fb = 19.487 ksi

Post good for either height and bending

Termination posts (used for cable termination)

1" x 3" CABLE POST 6005A-T6 Aluminum ; $S_{y1} = 1.21016 \text{ in}^3$; $S_{XX1} = 0.87144 \text{ in}^3$

Out of plane loading For 36" tall posts, 4.5 ft max spacing $;L_6 = 54$ in

Per IRC ; $M_1 = 200 \text{ lbs } * H_{36} = 7200.000 \text{ lb_in ;at base connection}$; $M_5 = 200 \text{ lbs } * H_{36}/2 = 3600.000 \text{ lb in ;at mid-height}$

For 42" tall posts, 4.5 ft max spacing $;L_5 = 54$ in

Per IRC ;M₃ = 200 lbs * H₄₂ = 8400.000 lb_in ;at base connection

James G. Pierson, Inc.	Cable Railing Syst	ems	
Consulting Structural Engineers 610 S.W. Alder, Suite 918 Portland, Oregon 97205 Tel: (503) 226-1286 Fax: (503) 226-3130	ation Residential	Date 12/14/2017	
	Railpro	Sheet no. Page 10 of 30	

;M₆ = 200 lbs * H₄₂/2 = **4200.000** lb_in ;at mid-height

Residential – 36" height ; $F_{b1} = M_1/S_{XX1} = 8262.187$ psi ; at bottom connection ; $F_{b5} = M_5/S_{XX1} = 4131.093$ psi ; at midheight

$$\label{eq:states} \begin{split} & Commercial-42"\ height\\ & ;F_{b3}=M_3/\ S_{XX1}=\textbf{9639.218}\ psi\ ;\ at\ bottom\ connection\\ & ;F_{b6}=M_6/\ S_{XX1}=\textbf{4819.609}\ psi\ ;\ at\ midheight \end{split}$$

Allowable; Fb6005T6 = 19.487 ksi

Check bending in other direction due to Cable tension bending (in-plane)

For 225 lbs tension

For 36" tall posts ; M_2 = 926 lb_ft

For 42" tall posts ; $M_4 = 1287 \text{ lb}_{ft}$

Residential – 36" height ; $F_{b2} = M_2/S_{y1} = 9.182$ ksi ;

$$\label{eq:commercial-42} \begin{split} & \text{Commercial}-42" \text{ height} \\ & ; F_{b4} = M_4 / \ S_{y1} = \textbf{12.762} \ \text{ksi} \ ; \end{split}$$

Allowable; Fb6005T6 = **19.487** ksi

36" Posts combined Loading (check at midheight): ; $F_{b5} / F_{b6005T6} + F_{b3} / F_{b6005T6} = 0.707$

36" tall Post good for tension created bending plus guardrail forces.

42" Posts combined Loading (checked at midheight): ; $F_{b6} / F_{b6005T6} + F_{b4} / F_{b6005T6} = 0.902$

42" tall Post okay for tension created bending plus guardrail forces.

James G. Pierson, Inc.	Project Cable Railing Systems	Job no.
Consulting Structural Engineers 610 S.W. Alder, Suite 918 Portland, Oregon 97205 Tel: (503) 226-1286 Fax: (503) 226-3130	Location Residential	Date 12/14/2017
	Client Railpro	Sheet no. Page 11 of 30

TOP MOUNTED BASEPLATE

Posts attach to plate at interior holes and is attached to substrate (deck) at hole located near the edges.

IRC ;OTM₃₆ = 200 lbs * (H₃₆ + .375 in) ; OTM₃₆ = 7275.000 lb_in

Tension in post base screw connections is ;T = OTM₃₆ / (1.25 in * 2) ; T = 2910.000 lbs

SAE Grade 5 screws ; F_{tscrew} = 120 ksi * .75 = 90.000 ksi ; A_{screw} reg = T / F_{tscrew} ; A_{screw} reg = 0.032 in²

Try ¼" diameter screws ;A_{screw} = 0.0318 in² ;F_{vscrew} = 120 ksi * .60 / 3 * .7 ; F_{vscrew} = **16.800** ksi

Use (2) ¼" diameter x 2" long SAE Grade 5 (min.) self tapping Torx drive flate head screws (1 ½" min. Embedment into post)

Baseplate for 42" tall posts

Per IRC ;OTM₄₂ = 200 lbs * (H₄₂ + .375 in) ; OTM₄₂ = 8475.000 lb_in

Tension in post base screw connections is $T_{42} = OTM_{42} / (1.25 \text{ in } * 3)$; $T_{42} = 2260.000$ lbs

SAE Grade 5 screws ; F_{tscrew} = 120 ksi * .75 = **90.000** ksi ;A_{screw}reg = T / F_{tscrew} ;A_{screw}reg = **0.032** in²

Try ¼" diameter screws ;A_{screw} = 0.0318 in² ;F_{vscrew} = 120 ksi * .60 / 3 * .7 ; F_{vscrew} = **16.800** ksi

Use (2) 1/4" diameter x 2" long SAE Grade 5 (min.) self tapping Torx drive flate head screws (1 1/2" min. Embedment into post)

Use 5/16" diameter screws (greater capacity than 1/4")

CHECK TOP MOUNTED BASE PLATES FOR BENDING

3/8" x 4" x 4" plate (wood connections)

;T_{plate} = OTM₄₂ / 3.375 in = 2511.111 lb

;Bending = OTM₄₂ / (4 in * (4 in)² / 6); Bending = **794.531** psi ;d = 2 in ;T = Bending * d / 2 * 4 in; T = **3178.125** lb

Plate bending is maximum below edge of post or 1.18" from plate edge

James G. Pierson, Inc.	Project Cable Railing Systems	Job no.
Consulting Structural Engineers 610 S.W. Alder, Suite 918 Portland, Oregon 97205 Tel: (503) 226-1286 Fax: (503) 226-3130	Location Residential	Date 12/14/2017
	Client Railpro	Sheet no. Page 12 of 30

;P₂ = (2 in - 1.18 in) / 2 in * Bending = 325.758 psi

;Mmax = (($P_2 * 1.18 \text{ in}^2 / 2$) + ((Bending – P_2)* 1.18 in² / (2) * (2/3))) * 4 in ;Mmax = **1506.325** lb in

;Fb = Mmax *6 / (4 in * .375 in * .375 in) = 16067.470 psi

Okay

try 1/4" x 4" x 4" plate

;T_{plate} = OTM₄₂ / 3.375 in = 2511.111 lb

;Bending = OTM₄₂ / (4 in * (4 in)² / 6); Bending = **794.531** psi ;d = 2 in ;T = Bending * d / 2 * 4 in; T = **3178.125** lb

Plate bending is maximum below edge of post or 1.18" from plate edge

;P2 = (2 in - 1.18 in) / 2 in * Bending = 325.758 psi

; Mmax = ((P₂ * 1.18 in² / 2) + ((Bending – P₂)* 1.18 in² / (2) * (2/3))) * 4 in ; Mmax = **1506.325** lb_in

;F_b = Mmax *6 / (4 in * .25 in * .25 in) = 36151.807 psi

No Good - Need the 3/8" plate thickness

try 3/8" x 5" x 5" baseplate (concrete connections)

;T_{plate} = OTM₄₂ / 4.375 in = **1937.143** lb

;Bending = OTM₄₂ / (5 in * (5 in)² / 6); Bending = **406.800** psi ;d = 2.5 in ;T = Bending * d / 2 * 5 in; T = **2542.500** lb

Plate bending is maximum below edge of post or 1.68" from plate edge

;P₂ = (2.5 in - 1.68 in) / 2.5 in * Bending = 133.430 psi

; Mmax = ((P₂ * 1.68 in² / 2) + ((Bending – P₂)* 1.68 in² / (2) * (2/3))) * 5 in ; Mmax = **1325.843** lb_in

;Fb = Mmax *6 / (5 in * .375 in * .375 in) = 11313.857 psi

Okay

James G. Pierson, Inc.	Cable Railing Systems	Job no.
Consulting Structural Engineers	Location Residential	Date 12/14/2017
Tel: (503) 226-1286 Fax: (503) 226-3130	Client Railpro	Sheet no. Page 13 of 30

CHECK 6x5 BASE PLATE FOR BENDING

3/8" x 6" x 5" plate

;T_{plate2} = OTM₄₂ / 4.38 in = **1934.932** lb

;Bending2 = OTM₄₂ / (6 in * (5 in)² / 6); Bending2 = **339.000** psi ;d = 2.5 in ;T = Bending2 * d / 2 * 6 in; T = **2542.500** lb

Plate bending is maximum below edge of post or 1.75" from plate edge

;P₃ = (2.5 in - .75 in) / 2.5 in * Bending = **284.760** psi

;Mmax2 = ((P₃ * .375 in² / 2) + ((Bending – P₃)* .375 in² / (2) * (2/3))) * 5 in ;Mmax2 = **343.237** lb_in

;F_b = Mmax2 *6 / (5 in * .375 in * .375 in) = **2928.960** psi

Okay

James G. Pierson, Inc.	Project Cable Railing Systems	Job no.
Consulting Structural Engineers 610 S.W. Alder, Suite 918 Portland, Oregon 97205 Tel: (503) 226-1286 Fax: (503) 226-3130	Location Residential	Date 12/14/2017
	^{Client} Railpro	Sheet no. Page 14 of 30

BASE PLATE ATTACHMENT - TYP LINE POST

4x4x3/8" Plate

Anchor Tension ; AT = OTM_{36} / 3.375 in ; AT = **2155.556** lb 2 anchors per side ; Atbolt = AT / 2 = **1077.778** lb

Wood:

Try 3/8" diameter lag bolts and assume Douglas Fir

;Tallow = 305 lb/in * 1.6 * 2.78 in ;, 5" long lag, 2 25/32" embed 1.6 Cd wood factor ;Tallow = 1356.640 lb

Use 3/8" diameter x 5" embedment lag screws (4 corners)

Try 3/8" diameter lag bolts and assume Hem Fir PT

;Tallow = 269 lb/in * 1.6 * 3.28 in ;, 6" long lag, 3 9/32" embed 1.6 Cd wood factor ;Tallow = 1411.712 lb

Use 3/8" diameter x 6" embedment lag screws (4 corners)

Try 7/16" diameter lag bolts and assume Hem Fir PT

;Tallow = 302 lb/in * 1.6 * 2.22 in ;, 4" long lag, 2 7/32" embed 1.6 Cd wood factor ;Tallow = 1072.704 lb

Use 7/16" diameter x 4" embedment lag screws (4 corners)

Try #14 x 5" stainless steel wood screws and assume Hem Fir PT

;T_{allow} = 146 lb/in * 1.6 * 5 in ;, 5" long screws, 5" embed 1.6 Cd wood factor ;T_{allow} = 1168.000 lb

Just works #14-5" wood screws (4 corners)

Try #14 x 5" stainless steel wood screws and assume Douglas Fir

;Tallow = 172 lb/in * 1.6 * 5 in ;, 5" long screws, 5" embed 1.6 Cd wood factor ;Tallow = 1376.000 lb

Use #14-5" wood screws (4 corners)

5x5x3/8" Plate

Anchor Tension ; AT = $OTM_{42} / 4.375$ in ; AT = **1937.143** lb 2 anchors per side ; Atbolt = AT / 2 = **968.571** lb

Try #14 x 5" stainless steel wod screws and assume Hem Fir PT

;T_{allow} = 146 lb/in * 1.6 * 5 in ;, 5" long lag, 5" embed 1.6 Cd wood factor ;T_{allow} = 1168.000 lb

Use #14 x 5" embedment ss wood screws (4 corners)

James G. Pierson, Inc.	Cable Railing Systems	Job no.
Consulting Structural Engineers 610 S.W. Alder, Suite 918 Portland, Oregon 97205 Tel: (503) 226-1286 Fax: (503) 226-3130	Location Residential	Date 12/14/2017
	Client Railpro	Sheet no. Раде 15 of 30

- 3 1/8"

The first h

2 3/4"

James G. Pierson, Inc.	Project Cable Railing Systems	Job no.
Consulting Structural Engineers 610 S.W. Alder, Suite 918 Portland, Oregon 97205 Tel: (503) 226-1286 Fax: (503) 226-3130	Location Residential	Date 12/14/2017
	^{Client} Railpro	Sheet no. Раде 16 of 30

BASE PLATE ATTACHMENT - TERMINATION POST

6x4x3/8" Plate

Anchor Tension ; AT = OTM₃₆ / 3.375 in ; AT = **2155.556** lb 2 anchors per side ; Atbolt = AT / 2 = **1077.778** lb Shear due to 175 lbs in cables ;V_c = 5 * 175 lbs = **875.000** lbs Shear due to fall protection ;V_f = 200 lbs

Try #14 x 5" stainless steel wood screws and assume Hem Fir PT

 $T_{allow} = 146 \text{ lb/in } * 1.6 * 5 \text{ in };$ 5" long lag, 5" embed 1.6 Cd wood factor $T_{allow} = 1168.000 \text{ lb}$ $V_{allow} = 196 \text{ lbs } * 4 * 1.6 ;$ 4 screws total, 1.6 Cd wood factor $T_{allow} = 1254.400 \text{ lb}$

No Good

Try 3/8" diameter lag bolts and assume Hem Fir PT

 $T_{allow} = 269 \text{ lb/in * } 1.6 * 3.82 \text{ in };$ 6" long lag, 3 25/32" embed 1.6 Cd wood factor $T_{allow} = 1644.128 \text{ lb}$ $T_{allow} = 270 \text{ lbs * } 4 * 1.6 \text{ ; } 4 \text{ lags total}, 1.6 \text{ Cd wood factor }; T_{allow} = 1728.000 \text{ lb}$

Atbolt / T_{allow} = **0.656** (V_c + V_f) / V_{allow} = **0.622**

Use 3/8" diameter x 7" embedment lag screws (4 corners)

Try 3/8" diameter lag bolts and assume Douglas Fir

 $T_{allow} = 305 \text{ lb/in * } 1.6 * 3.82 \text{ in };$ 6" long lag, 3 25/32" embed 1.6 Cd wood factor ; $T_{allow} = 1864.160 \text{ lb}$; $V_{allow} = 280 \text{ lbs * } 4 * 1.6$; 4 lags total, 1.6 Cd wood factor ; ; $V_{allow} = 1792.000 \text{ lb}$

Atbolt / $T_{allow} = 0.578$ (V_c + V_f) / V_{allow} = 0.600

Use 3/8" diameter x 7" embedment lag screws (4 corners)

James G. Pierson, Inc.	Project Cable Railing Systems	Job no.
Consulting Structural Engineers 610 S.W. Alder, Suite 918 Portland, Oregon 97205 Tel: (503) 226-1286 Fax: (503) 226-3130	Location Residential	Date 12/14/2017
	^{Client} Railpro	Sheet no. Page 17 of 30

FASCIA BRACKET CONNECTION - LINE POST

6x4x3/8" Plate

Anchor Tension ; AT = OTM_{42} / 4.2 in ; AT = **2017.857** lb 2 side by side anchors per bracket ; Atbolt = AT / 2 = **1008.929** lb

Wood:

Try 3/8" diameter lag bolts and assume Douglas Fir

;T_{allow} = 305 lb/in * 1.6 * 2.78 in ;, 5" long lag, 2 25/32" embed 1.6 Cd wood factor ;T_{allow} = 1356.640 lb

Use 3/8" diameter x 5" embedment lag screws (4 corners)

Try 3/8" diameter lag bolts and assume Hem Fir PT

 $T_{allow} = 269 \text{ lb/in * } 1.6 * 3.28 \text{ in };$ 6" long lag, 3 9/32" embed 1.6 Cd wood factor ; $T_{allow} = 1411.712 \text{ lb}$; $V_{allow} = 270 \text{ lbs * } 4 * 1.6 ;$ 4 lags total, 1.6 Cd wood factor ; ; $V_{allow} = 1728.000 \text{ lb}$

Use 3/8" diameter x 6" embedment lag screws (4 corners)

Try 7/16" diameter lag bolts and assume Hem Fir PT

;Tallow = 302 lb/in * 1.6 * 2.22 in ;, 4" long lag, 2 7/32" embed 1.6 Cd wood factor ;Tallow = 1072.704 lb

Use 7/16" diameter x 4" embedment lag screws (4 corners)

Try #14 x 5" stainless steel wood screws and assume Hem Fir PT

;Tallow = 146 lb/in * 1.6 * 5 in ;, 5" long screws, 5" embed 1.6 Cd wood factor ;Tallow = 1168.000 lb

Just works #14-5" wood screws (4 corners)

Try #14 x 5" stainless steel wood screws and assume Douglas Fir

;T_{allow} = 172 lb/in * 1.6 * 5 in ;, 5" long screws, 5" embed 1.6 Cd wood factor ;T_{allow} = 1376.000 lb

Use #14-5" wood screws (4 corners)

James G. Pierson, Inc.	Project Cable Railing Systems	Job no.
Consulting Structural Engineers 610 S.W. Alder, Suite 918 Portland, Oregon 97205 Tel: (503) 226-1286 Fax: (503) 226-3130	Location Residential	Date 12/14/2017
	^{Client} Railpro	Sheet no. Page 18 of 30

FASCIA BRACKET - TERMINATION POST

6x4x3/8" Plate

Anchor Tension ; AT = OTM₄₂ / 4.2 in ; AT = **2017.857** lb 2 side by side anchors per bracket ; Atbolt = AT / 2 = **1008.929** lb Shear due to 175 lbs tension in cables ;V_c = 5 * 175 lbs = **875.000** lbs Shear due to fall protection ;V_f = 200 lbs

Wood:

Try 3/8" diameter lag bolts and assume Douglas Fir

 $T_{allow} = 305 \text{ lb/in * } 1.6 \text{ * } 2.78 \text{ in };$ 5" long lag, 2 25/32" embed 1.6 Cd wood factor ; $T_{allow} = 1356.640 \text{ lb}$; $V_{allow} = 196 \text{ lbs * } 4 \text{ * } 1.6 \text{ ; } 4 \text{ screws total}$, 1.6 Cd wood factor ; ; $V_{allow} = 1254.400 \text{ lb}$

Use 3/8" diameter x 5" embedment lag screws (4 corners)

Try 3/8" diameter lag bolts and assume Hem Fir PT

 $T_{allow} = 269 \text{ lb/in * } 1.6 * 3.28 \text{ in };$ 6" long lag, 3 9/32" embed 1.6 Cd wood factor $T_{allow} = 1411.712 \text{ lb}$ $V_{allow} = 270 \text{ lbs * } 4 * 1.6 \text{ ; } 4 \text{ lags total}, 1.6 \text{ Cd wood factor }; V_{allow} = 1728.000 \text{ lb}$

Use 3/8" diameter x 6" embedment lag screws (4 corners)

Try 7/16" diameter lag bolts and assume Hem Fir PT

;T_{allow} = 302 lb/in * 1.6 * 2.22 in ;, 4" long lag, 2 7/32" embed 1.6 Cd wood factor ;T_{allow} = 1072.704 lb

Use 7/16" diameter x 4" embedment lag screws (4 corners)

Try #14 x 5" stainless steel wood screws and assume Hem Fir PT

;Tallow = 146 lb/in * 1.6 * 5 in ;, 5" long screws, 5" embed 1.6 Cd wood factor ;Tallow = 1168.000 lb

Just works #14-5" wood screws (4 corners)

Try #14 x 5" stainless steel wood screws and assume Douglas Fir

;Tallow = 172 lb/in * 1.6 * 5 in ;, 5" long screws, 5" embed 1.6 Cd wood factor ;Tallow = 1376.000 lb

Use #14-5" wood screws (4 corners)

James G. Pierson, Inc.	Project Cable Railing Systems	Job no.
Consulting Structural Engineers 610 S.W. Alder, Suite 918 Portland, Oregon 97205 Tel: (503) 226-1286 Fax: (503) 226-3130	Location Residential	Date 12/14/2017
	Client Railpro	Sheet no. Page 19 of 30

BASE PLATE ATTACHMENTS - CONCRETE

Concrete:

Assume 6" minimum thick concrete - use Hilti HIT-HY 200 + HIT-Z-R Simpson 3/8" diameter strong bolts

See attached ACI 318 Appendix D calcs. and details.

Project Iob no	
James G. Pierson, Inc. Cable Railing Systems	
Consulting Structural Engineers 610 S.W. Alder, Suite 918 Portland, Oregon 97205 Residential	/14/2017
Tel: (503) 226-1286 Fax: (503) 226-3130 Client Sheet no. Railpro Page	20 of 30

Company: Specifier: Address: Phone I Fax: E-Mail: James G. Pierson, Inc Golberg 610 SW Alder #918 503-226-1286 |

а ниста н

Cable Railing Line Post Base 12/14/2017

Specifier's comments: IRC Code, 36" tall

1 Input data

Anchor type and diameter:	HIT-HY 200 + HIT-Z-R 3/8
Effective embedment depth:	h _{ef,opti} = 3.425 in. (h _{ef,limit} = 3.750 in.)
Material:	A4
Evaluation Service Report:	ESR-3187 SAFESET
Issued I Valid:	11/1/2016 3/1/2018
Proof:	Design method ACI 318-08 / Chem
Stand-off installation:	e _b = 0.000 in. (no stand-off); t = 0.375 in.
Anchor plate:	$I_x x I_y x t = 5.000$ in. x 5.000 in. x 0.375 in.; (Recommended plate thickness: not calculated
Profile:	no profile
Base material:	cracked concrete, 2500, $f_{\rm c}$ = 2500 psi; h = 6.000 in., Temp. short/long: 32/32 $^{\circ}\text{F}$
Installation:	hammer drilled hole, Installation condition: Dry
Reinforcement:	tension: condition B, shear: condition B; no supplemental splitting reinforcement present
	edge reinforcement: none or < No. 4 bar
Seismic loads (cat. C, D, E, or F)	no

Geometry [in.] & Loading [lb, in.lb]

4

2

−⊳_x

www.hilti.us

Company: Specifier: Address: Phone I Fax: E-Mail: James G. Pierson, Inc Golberg 610 SW Alder #918 503-226-1286 |

3

2 Cable Railing Line Post Base 12/14/2017

Compression

•

Tension

2 Load case/Resulting anchor forces

Load case: Design loads

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	1470	80	0	80
2	1470	80	0	80
3	0	80	0	80
4	0	80	0	80

max. concrete compressive strain:	0.24 [‰]
max. concrete compressive stress:	1029 [psi]
resulting tension force in $(x/y)=(0.000/-1.800)$:	2939 [lb]
resulting compression force in $(x/y)=(0.000/2.119)$:	2939 [lb]

3 Tension load

	Load N _{ua} [lb]	Capacity 🖕 N _n [lb]	Utilization $\beta_N = N_{ua}/\phi N_n$	Status
Steel Strength*	1470	4749	31	OK
Pullout Strength*	1470	5169	29	OK
Sustained Tension Load Bond Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Strength**	2939	2957	100	OK

* anchor having the highest loading **anchor group (anchors in tension)

3.1 Steel Strength

N _{sa}	= ESR value	refer to ICC-ES ESR-3187
φ N _{sa}	_a ≥ N _{ua}	ACI 318-08 Eq. (D-1)

Variables

A _{se,N} [in. ²]	f _{uta} [psi]	_	
0.08	94200		
Calculations			
N _{sa} [lb] 7306			
Results			
N _{sa} [lb]	∲ steel	φ N _{sa} [lb]	N _{ua} [lb]
7306	0.650	4749	1470

3.2 Pullout Strength

	•		
$\begin{array}{l} N_{pn} &= N_{p} \\ \phi & N_{pn} \geq N_{ua} \end{array}$	refer to ICC-ES ESR-31 ACI 318-08 Eq. (D-1)	187	
Variables			
N _p [lb] 7952			
Calculations			
-			
-			
Results			
N _{pn} [lb]	∮ concrete	φ N _{pn} [lb]	N _{ua} [lb]
7952	0.650	5169	1470

Company:	
Specifier:	
Address:	
Phone I Fax:	
E-Mail:	

James G. Pierson, Inc Golberg 610 SW Alder #918 503-226-1286 |

Page:	-
Project:	
Sub-Project I Pos. No.:	
Date:	

3 Cable Railing Line Post Base 12/14/2017

3.3 Concrete Breakout Strength

N _{cbg}	$= \left(\frac{A_{Nc}}{A_{Nc0}}\right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b}$	ACI 318-08 Eq. (D-5)
φ N _{cbg}	j≥N _{ua}	ACI 318-08 Eq. (D-1)
A _{Nc}	see ACI 318-08, Part D.5.2.1, Fig. RD.5.2.1(b)	
A _{Nc0}	$=9 n_{ef}$	ACI 318-08 Eq. (D-6)
$\psi_{\text{ ec,N}}$	$=\left(\overline{1+\frac{2}{3}\frac{e_{N}}{h_{ef}}}\right) \le 1.0$	ACI 318-08 Eq. (D-9)
$\psi_{\text{ed},\text{N}}$	$= 0.7 + 0.3 \left(\frac{C_{a,min}}{1.5h_{ef}} \right) \le 1.0$	ACI 318-08 Eq. (D-11)
$\psi_{\text{ cp,N}}$	$= MAX\left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}}\right) \le 1.0$	ACI 318-08 Eq. (D-13)
Nb	$= k_c \lambda \sqrt{f_c} h_{ef}^{1.5}$	ACI 318-08 Eq. (D-7)

Variables

h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]	Ψ c,N		
3.425	0.000	0.000	2.500	1.000	-	
c _{ac} [in.]	k _c	λ	f _c [psi]			
9.071	17	1	2500			
O-louistic and						
Calculations						
A _{Nc} [in. ²]	A _{Nc0} [in. ²]	Ψ ec1,N	Ψ ec2,N	Ψ ed,N	Ψ cp,N	N _b [lb]
104.82	103.96	1.000	1.000	0.847	1.000	5326

Results

N _{cbg} [lb]	φ concrete	φ N _{cbg} [lb]	N _{ua} [lb]
4549	0.650	2957	2939

Company: Specifier: Address: Phone I Fax: E-Mail: James G. Pierson, Inc Golberg 610 SW Alder #918 503-226-1286 | 4 Cable Railing Line Post Base 12/14/2017

4 Shear load

	Load V _{ua} [lb]	Capacity _∳ V _n [lb]	Utilization $\beta_V = V_{ua}/\phi V_n$	Status
Steel Strength*	80	2630	4	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength (Concrete Breakout Strength controls)**	320	9386	4	OK
Concrete edge failure in direction **	N/A	N/A	N/A	N/A
* anohar baying the highest loading	**anabar group (role)(ant anabara)			

* anchor having the highest loading **anchor group (relevant anchors)

4.1 Steel Strength

V_{sa}	= (0.6 A _{se,V} f _{uta})	refer to ICC-ES ESR-3187
φ V _s	_{teel} ≥ V _{ua}	ACI 318-08 Eq. (D-2)

Variables

A _{se,V} [in. ²]	f _{uta} [psi]	(0.6 A _{se,V} f _{uta}) [lb]	
0.08	94200	4384	
Calculations			
V _{sa} [lb] 4384			
Results			
V _{sa} [lb]	∮ steel	φ V _{sa} [lb]	V _{ua} [lb]
4384	0.600	2630	80

4.2 Pryout Strength (Concrete Breakout Strength controls)

V _{cpg}	$= k_{cp} \left[\left(\frac{A_{Nc}}{A_{Nc0}} \right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b} \right]$	ACI 318-08 Eq. (D-31)
ϕV_{cpg}	≥ V _{ua}	ACI 318-08 Eq. (D-2)
A _{Nc}	see ACI 318-08, Part D.5.2.1, Fig. RD.5.2.1(b)	
A _{Nc0}	= 9 h _{ef} ²	ACI 318-08 Eq. (D-6)
Ψ ec,N	$= \left(\frac{1}{1 + \frac{2 e_N}{3 h_{ef}}}\right) \le 1.0$	ACI 318-08 Eq. (D-9)
$\psi \; ed, N$	$= 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5h_{ef}} \right) \le 1.0$	ACI 318-08 Eq. (D-11)
$\psi_{\text{ cp,N}}$	$= MAX\left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}}\right) \le 1.0$	ACI 318-08 Eq. (D-13)
N _b	$= k_c \lambda \sqrt{f_c} h_{ef}^{1.5}$	ACI 318-08 Eq. (D-7)

Variables

k _{cp}	h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]		
2	3.425	0.000	0.000	2.500		
Ψ c.N	c _{ac} [in.]	k _c	λ	ť _c [psi]		
1.000	9.071	17	1	2500		
Calculations						
A _{Nc} [in. ²]	A _{Nc0} [in. ²]	Ψ ec1.N	Ψ ec2.N	Ψ ed.N	Ψ cp.N	N _b [lb]
154.49	103.96	1.000	1.000	0.847	1.000	5326
Results						
V _{cpg} [lb]	∮ concrete	φ V _{cpg} [lb]	V _{ua} [lb]			
13409	0.700	9386	320			

Company: Specifier: Address: Phone I Fax: E-Mail: James G. Pierson, Inc Golberg 610 SW Alder #918 503-226-1286 |

Page: Project: Sub-Project I Pos. No.: Date: 5 Cable Railing Line Post Base 12/14/2017

5 Combined tension and shear loads

 $\beta_{NV} = (\beta_N + \beta_V) / 1.2 <= 1$

6 Warnings

- The anchor design methods in PROFIS Anchor require rigid anchor plates per current regulations (ETAG 001/Annex C, EOTA TR029, etc.). This
 means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be
 sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Anchor calculates the minimum required anchor plate
 thickness with FEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid base plate assumption
 is valid is not carried out by PROFIS Anchor. Input data and results must be checked for agreement with the existing conditions and for
 plausibility!
- Condition A applies when supplementary reinforcement is used. The Φ factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to your local standard.
- Design Strengths of adhesive anchor systems are influenced by the cleaning method. Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions
- The ACI 318-08 version of the software does not account for adhesive anchor special design provisions corresponding to overhead applications.
- Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard!

Fastening meets the design criteria!

Company: Specifier: Address: Phone I Fax: E-Mail: James G. Pierson, Inc Golberg 610 SW Alder #918 503-226-1286 | Page: Project: Sub-Project I Pos. No.: Date: 6 Cable Railing Line Post Base 12/14/2017

7 Installation data

Anchor plate, steel: -Profile: no profile Hole diameter in the fixture: $d_f = 0.438$ in. Plate thickness (input): 0.375 in. Recommended plate thickness: not calculated Drilling method: Hammer drilled Cleaning: No cleaning of the drilled hole is required Anchor type and diameter: HIT-HY 200 + HIT-Z-R 3/8 Installation torque: 177.015 in.lb Hole diameter in the base material: 0.438 in. Hole depth in the base material: 4.425 in. Minimum thickness of the base material: 5.675 in.

7.1 Recommended accessories

Coordinates Anchor in.

Anchor	х	У	C.,x	C+x	C _{-y}	c _{+y}
1	-1.800	-1.800	-	-	2.500	-
2	1.800	-1.800	-	-	2.500	-
3	-1.800	1.800	-	-	6.100	-
4	1.800	1.800	-	-	6.100	-

Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor (c) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Company: Specifier: Address: Phone I Fax: E-Mail: James G. Pierson, Inc Golberg 610 SW Alder #918 503-226-1286 |

Page: Project: Sub-Project I Pos. No.: Date:

Cable Railing Line Post Base 12/14/2017

8 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case
 by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or
 programs, arising from a culpable breach of duty by you.

Profis Anchor 2.7.5

1

12/14/2017

www.hilti.us

Company: Specifier: Address: Phone I Fax: E-Mail:

Specifier's comments:

T

1 Input data

Anchor type and diameter:	HIT-HY 200 + HIT-Z-R 3/8	
Effective embedment depth:	h _{ef,opti} = 3.583 in. (h _{ef,limit} = 3.750 in.)	Hilt HIT-HY 200
Material:	A4	
Evaluation Service Report:	ESR-3187	SAFE
Issued I Valid:	11/1/2016 3/1/2018	
Proof:	Design method ACI 318-08 / Chem	
Stand-off installation:	e _b = 0.000 in. (no stand-off); t = 0.500 in.	
Anchor plate:	l _x x l _y x t = 6.000 in. x 5.000 in. x 0.500 in.; (Recom	mended plate thickness: not calculated
Profile:	no profile	
Base material:	cracked concrete, 2500, f_c ' = 2500 psi; h = 6.000 in	n., Temp. short/long: 32/32 °F
Installation:	hammer drilled hole, Installation condition: Dry	1
Reinforcement:	tension: condition B, shear: condition B; no supple	mental splitting reinforcement present
	edge reinforcement: none or < No. 4 bar	
Seismic loads (cat. C, D, E, or F)	no	

Page:

Date:

Project:

Sub-Project I Pos. No.:

Seismic loads (cat. C, D, E, or F)

Geometry [in.] & Loading [lb, in.lb]

Company: Specifier: Address: Phone I Fax: E-Mail:

Page: Project: Sub-Project I Pos. No.: Date:

12/14/2017

2

2 Load case/Resulting anchor forces

Ι

Load case: Design loads

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	1459	274	262	80
2	1459	274	262	80
3	0	274	262	80
4	0	274	262	80

max. concrete compressive strain:	0.21 [‰]
max. concrete compressive stress:	920 [psi]
resulting tension force in $(x/y)=(0.000/-1.800)$:	2918 [lb]
resulting compression force in $(x/y)=(0.000/2.148)$:	2918 [lb]

3 Tension load

	Load N _{ua} [lb]	Capacity 🖕 N _n [lb]	Utilization $\beta_N = N_{ua}/\phi N_n$	Status
Steel Strength*	1459	4749	31	OK
Pullout Strength*	1459	5169	29	OK
Sustained Tension Load Bond Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Strength**	2918	3305	89	OK

* anchor having the highest loading **anchor group (anchors in tension)

3.1 Steel Strength

N _{sa}	= ESR value	refer to ICC-ES ESR-3187
φ N _{sa}	a ≥ N _{ua}	ACI 318-08 Eq. (D-1)

Variables

A _{se,N} [in.²] 8	f _{uta} [psi] 94200
Calculatio	ns	
N _{sa} [730	[b] 06	
Results		

N _{sa} [lb]	∮ _{steel}	φ N _{sa} [lb]	N _{ua} [lb]
7306	0.650	4749	1459

3.2 Pullout Strength

	J •		
	refer to ICC-ES ESR-31 ACI 318-08 Eq. (D-1)	87	
Variables			
N _p [lb] 7952			
Calculations			
-			
-			
Results			
N _{pn} [lb]	∲ concrete	φ N _{pn} [lb]	N _{ua} [lb
7952	0.650	5169	1459

www.hilti.usProfis ACompany:Page:3Specifier:Project:Address:Sub-Project I Pos. No.:Phone I Fax:|Date:E-Mail:12/14/2017

3.3 Concrete Breakout Strength

$N_{cbg} = \left(\frac{A_{Nc}}{A_{Nc0}}\right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b}$	ACI 318-08 Eq. (D-5)
$\oint_{\text{Cbg}} N_{\text{cbg}} \ge N_{\text{ua}}$	ACI 318-08 Eq. (D-1)
A_{Nc} see ACT 316-06, Part D.5.2.1, Fig. RD.5.2.1(L A_{Nc0} = 9 h_{ef}^2	ACI 318-08 Eq. (D-6)
$\psi_{\text{ec,N}} = \left(\frac{1}{1 + \frac{2 e_{N}}{3 h_{\text{ef}}}}\right) \le 1.0$	ACI 318-08 Eq. (D-9)
$\psi_{\text{ed,N}} = 0.7 + 0.3 \left(\frac{c_{a,\text{min}}}{1.5h_{\text{ef}}} \right) \le 1.0$	ACI 318-08 Eq. (D-11)
$\Psi_{cp,N} = MAX\left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}}\right) \le 1.0$	ACI 318-08 Eq. (D-13)
$N_b = k_c \lambda \sqrt{f_c} h_{ef}^{1.5}$	ACI 318-08 Eq. (D-7)

Variables

h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]	Ψ c,N		
3.583	0.000	0.000	2.500	1.000		
c _{ac} [in.]	k _c	λ	f _c [psi]			
10.048	17	1	2500			
Calculations						
A _{Nc} [in. ²]	A _{Nc0} [in. ²]	Ψ ec1,N	Ψ ec2,N	Ψ ed,N	$\Psi_{\text{cp,N}}$	N _b [lb]
120.79	113.81	1.000	1.000	0.841	1.000	5700

Results

N _{cbg} [lb]	∲ concrete	φ N _{cbg} [lb]	N _{ua} [lb]
5085	0.650	3305	2918

www.hilti.us			Profis Anchor 2.	7
Company:		Page:	4	
Specifier:		Project:		
Address:		Sub-Project I Pos. No.:		
Phone I Fax:		Date:	12/14/2017	
F-Mail [.]	·			

4 Shear load

	Load V _{ua} [lb]	Capacity 🖕 V _n [lb]	Utilization $\beta_V = V_{ua}/\phi V_n$	Status
Steel Strength*	274	2630	11	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength (Concrete Breakout Strength controls)**	1098	10391	11	OK
Concrete edge failure in direction y-**	1050	2936	36	OK

* anchor having the highest loading **anchor group (relevant anchors)

4.1 Steel Strength

V _{sa} = (0.6 /	A _{se,V} f _{uta})	refer to ICC-ES ESR-3187
φ V _{steel} ≥ V _{ua}		ACI 318-08 Eq. (D-2)

Variables

A _{se,V} [in. ²]	f _{uta} [psi]	(0.6 A _{se,V} f _{uta}) [lb]	
0.08	94200	4384	
Calculations			
Usa [lb]			
Results			
V _{sa} [lb]	∲ steel	φ V _{sa} [lb]	V _{ua} [lb]
4384	0.600	2630	274

4.2 Pryout Strength (Concrete Breakout Strength controls)

V _{cpg}	$= k_{cp} \left[\left(\frac{A_{Nc}}{A_{Nc0}} \right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b} \right]$	ACI 318-08 Eq. (D-31)
φ V _{cpg}	≥ V _{ua}	ACI 318-08 Eq. (D-2)
A _{Nc}	see ACI 318-08, Part D.5.2.1, Fig. RD.5.2.1(b)	
A _{Nc0}	= 9 h _{ef} ²	ACI 318-08 Eq. (D-6)
Ψ ec,N	$= \left(\frac{1}{1 + \frac{2}{3} \frac{e_N}{h_{ef}}}\right) \le 1.0$	ACI 318-08 Eq. (D-9)
ψ ed,N	$= 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5h_{ef}} \right) \le 1.0$	ACI 318-08 Eq. (D-11)
Ψ cp,N	$= MAX\left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}}\right) \le 1.0$	ACI 318-08 Eq. (D-13)
N _b	$= \mathbf{k}_{c} \lambda \sqrt{\mathbf{f}_{c}} \mathbf{h}_{ef}^{1.5}$	ACI 318-08 Eq. (D-7)

Variables

k _{cp}	h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]		
2	3.583	0.000	0.000	2.500		
Ψ с,Ν	c _{ac} [in.]	k _c	λ	f _c [psi]		
1.000	10.048	17	1	2500		
Calculations						
A _{Nc} [in. ²]	A _{Nc0} [in. ²]	Ψ ec1,N	Ψ ec2,N	Ψ ed,N	Ψ _{cp,N}	N _b [lb]
176.30	113.81	1.000	1.000	0.841	1.000	5700
Results						
V _{cpg} [lb]	∲ concrete	φ V _{cpg} [lb]	V _{ua} [lb]			
14844	0.700	10391	1098			

www.hilti.us			Profis Anchor 2.
Company:		Page:	5
Specifier:		Project:	
Address:		Sub-Project I Pos. No.:	
Phone I Fax:		Date:	12/14/2017
E-Mail:	·		

	4.3	Concrete	edge	failure	in	direction	у-
--	-----	----------	------	---------	----	-----------	----

V_{cbg}	$= \left(\frac{A_{Vc}}{A_{Vc0}}\right) \psi_{ec,V} \psi_{ed,V} \psi_{c,V} \psi_{h,V} \psi_{parallel,V} V_{b}$	ACI 318-08 Eq. (D-22)
ϕV_{cbg}	≥ V _{ua}	ACI 318-08 Eq. (D-2)
A _{Vc}	see ACI 318-08, Part D.6.2.1, Fig. RD.6.2.1(b)	
A_{Vc0}	$= 4.5 c_{a1}^2$	ACI 318-08 Eq. (D-23)
$\psi_{\text{ec,V}}$	$= \left(\frac{1}{1 + \frac{2e_v}{3c_{a1}}}\right) \le 1.0$	ACI 318-08 Eq. (D-26)
$\psi_{\text{ed},\text{V}}$	$= 0.7 + 0.3 \left(\frac{c_{a2}}{1.5 c_{a1}} \right) \le 1.0$	ACI 318-08 Eq. (D-28)
$\psi_{\text{h,V}}$	$=\sqrt{\frac{1.5c_{a1}}{h_{a}}} \ge 1.0$	ACI 318-08 Eq. (D-29)
V_{b}	$= \left(7 \left(\frac{I_e}{d_a}\right)^{0.2} \sqrt{d_a}\right) \lambda \ \sqrt{f_c} \ c_{a1}^{1.5}$	ACI 318-08 Eq. (D-24)

Variables

c _{a1} [in.]	c _{a2} [in.]	e _{cV} [in.]	Ψ c,V	h _a [in.]
2.500	-	0.000	1.000	6.000
ا _ہ [in.]	λ	d _a [in.]	ť _c [psi]	₩ parallel V
3.000	1.000	0.375	2500	2.000

Calculations

A _{Vc} [in. ²]	A _{Vc0} [in. ²]	Ψ ec,V	$\psi_{\text{ed,V}}$	Ψ h,V	V _b [lb]
45.	94	28.13	1.000	1.000	1.000	1284
Results						
V _{cbg}	[lb]	¢ concrete	∳ V _{cbg} [lb]	V _{ua} [lb]		
419	95	0.700	2936	1050		

5 Combined tension and shear loads

β _N	βv	ζ	Utilization β _{N,V} [%]	Status
0.883	0.358	5/3	100	OK

 $\beta_{\mathsf{NV}}=\beta_{\mathsf{N}}^{\zeta}+\beta_{\mathsf{V}}^{\zeta}<=1$

6 Warnings

- The anchor design methods in PROFIS Anchor require rigid anchor plates per current regulations (ETAG 001/Annex C, EOTA TR029, etc.). This
 means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be
 sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Anchor calculates the minimum required anchor plate
 thickness with FEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid base plate assumption
 is valid is not carried out by PROFIS Anchor. Input data and results must be checked for agreement with the existing conditions and for
 plausibility!
- Condition A applies when supplementary reinforcement is used. The Φ factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to your local standard.
- Design Strengths of adhesive anchor systems are influenced by the cleaning method. Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions
- The ACI 318-08 version of the software does not account for adhesive anchor special design provisions corresponding to overhead applications.
- Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard!

Fastening meets the design criteria!

Company: Specifier: Address: Phone I Fax: E-Mail:

7 Installation data

Anchor plate, steel: -Profile: no profile Hole diameter in the fixture: $d_f = 0.438$ in. Plate thickness (input): 0.500 in. Recommended plate thickness: not calculated Drilling method: Hammer drilled Cleaning: No cleaning of the drilled hole is required

I

Page: Project: Sub-Project I Pos. No.: Date:

12/14/2017

6

Anchor type and diameter: HIT-HY 200 + HIT-Z-R 3/8 Installation torque: 177.015 in.lb Hole diameter in the base material: 0.438 in. Hole depth in the base material: 4.583 in. Minimum thickness of the base material: 5.833 in.

7.1 Recommended accessories

Coordinates Anchor in.

Anchor	х	У	С _{-х}	C+x	C _{-y}	C+y
1	-2.375	-1.800	-	-	2.500	-
2	2.375	-1.800	-	-	2.500	-
3	-2.375	1.800	-	-	6.100	-
4	2.375	1.800	-	-	6.100	-

Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor (c) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

	.		

www.hilti.us		Profis Anchor 2
Company:	Page:	7
Specifier:	Project:	
Address:	Sub-Project I Pos. No.:	
Phone I Fax:	Date:	12/14/2017
E-Mail:		

8 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case
 by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or
 programs, arising from a culpable breach of duty by you.

∩~

	······							
	UNLESS OTHERWISE SPECIFIED:		NAME	DATE				
	DIMENSIONS ARE IN INCHES	DRAWN	JGUIANG	10AUG10	DATE DRAWN:	IO AUGUST 2010		
RAILCRAFT	FRACTIONAL±	CHECKED	STEVE WEI	10AUG10	DWG, NO.			
MAILSMALL	ANGULAR: MACH± BEND ±	ENG APPR,				CADIE DOCT		
ALUMINUM RAILING SYSTEMS	THREE PLACE DECIMAL ±	MFG APPR.				CABLE POSI		
	INTERPRET GEOMETRIC	Q.A.				(REVISED)		
13272 Comber Way	TOLERANCING PER:	PROPRI	ETARY AND CONFID	ENTIAL				
MAILCRAFT Surrey, B.C. Canada, V3W 5V9	MATERIAL ALLOY & TEMPER:6005A-T6	THE INFORMATION CONTAINED IN THIS DRAWING		SIZE DWG. NO	D.		REV.	
	FINISH MILL FINISH	INTERNATIC	DNAL INC. ANY REPRODU		A			0
INTERNATIONAL INC.	SOLIDWORKS 2010	PERMISSION	AS A WHOLE WITHOUT	TIONAL INC.	SCALE:1:1 WE	GHT:	SHEET 1	OF 1

6/5/15

6/5/15